1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Names
open Term
open Termops
open Namegen
open Pre_env
open Environ
open Evd
open Sigma.Notations
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
let safe_evar_value sigma ev =
try Some (Evd.existential_value sigma ev)
with NotInstantiatedEvar | Not_found -> None
(** Combinators *)
let evd_comb0 f evdref =
let (evd',x) = f !evdref in
evdref := evd';
x
let evd_comb1 f evdref x =
let (evd',y) = f !evdref x in
evdref := evd';
y
let evd_comb2 f evdref x y =
let (evd',z) = f !evdref x y in
evdref := evd';
z
let e_new_global evdref x =
EConstr.of_constr (evd_comb1 (Evd.fresh_global (Global.env())) evdref x)
let new_global evd x =
let Sigma (c, sigma, p) = Sigma.fresh_global (Global.env()) evd x in
Sigma (EConstr.of_constr c, sigma, p)
(****************************************************)
(* Expanding/testing/exposing existential variables *)
(****************************************************)
(* flush_and_check_evars fails if an existential is undefined *)
exception Uninstantiated_evar of existential_key
let rec flush_and_check_evars sigma c =
match kind_of_term c with
| Evar (evk,_ as ev) ->
(match existential_opt_value sigma ev with
| None -> raise (Uninstantiated_evar evk)
| Some c -> flush_and_check_evars sigma c)
| _ -> map_constr (flush_and_check_evars sigma) c
let flush_and_check_evars sigma c =
flush_and_check_evars sigma (EConstr.Unsafe.to_constr c)
(** Term exploration up to instantiation. *)
let kind_of_term_upto = EConstr.kind_upto
let nf_evar0 sigma t = EConstr.to_constr sigma (EConstr.of_constr t)
let whd_evar = EConstr.whd_evar
let nf_evar sigma c = EConstr.of_constr (EConstr.to_constr sigma c)
let j_nf_evar sigma j =
{ uj_val = nf_evar sigma j.uj_val;
uj_type = nf_evar sigma j.uj_type }
let jl_nf_evar sigma jl = List.map (j_nf_evar sigma) jl
let jv_nf_evar sigma = Array.map (j_nf_evar sigma)
let tj_nf_evar sigma {utj_val=v;utj_type=t} =
{utj_val=nf_evar sigma v;utj_type=t}
let nf_evars_universes evm =
Universes.nf_evars_and_universes_opt_subst (safe_evar_value evm)
(Evd.universe_subst evm)
let nf_evars_and_universes evm =
let evm = Evd.nf_constraints evm in
evm, nf_evars_universes evm
let e_nf_evars_and_universes evdref =
evdref := Evd.nf_constraints !evdref;
nf_evars_universes !evdref, Evd.universe_subst !evdref
let nf_evar_map_universes evm =
let evm = Evd.nf_constraints evm in
let subst = Evd.universe_subst evm in
if Univ.LMap.is_empty subst then evm, nf_evar0 evm
else
let f = nf_evars_universes evm in
Evd.raw_map (fun _ -> map_evar_info f) evm, f
let nf_named_context_evar sigma ctx =
Context.Named.map (nf_evar0 sigma) ctx
let nf_rel_context_evar sigma ctx =
Context.Rel.map (nf_evar sigma) ctx
let nf_env_evar sigma env =
let nc' = nf_named_context_evar sigma (Environ.named_context env) in
let rel' = nf_rel_context_evar sigma (EConstr.rel_context env) in
EConstr.push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env)
let nf_evar_info evc info = map_evar_info (nf_evar0 evc) info
let nf_evar_map evm =
Evd.raw_map (fun _ evi -> nf_evar_info evm evi) evm
let nf_evar_map_undefined evm =
Evd.raw_map_undefined (fun _ evi -> nf_evar_info evm evi) evm
(*-------------------*)
(* Auxiliary functions for the conversion algorithms modulo evars
*)
let has_undefined_evars evd t =
let rec has_ev t =
match EConstr.kind evd t with
| Evar _ -> raise NotInstantiatedEvar
| _ -> EConstr.iter evd has_ev t in
try let _ = has_ev t in false
with (Not_found | NotInstantiatedEvar) -> true
let is_ground_term evd t =
not (has_undefined_evars evd t)
let is_ground_env evd env =
let is_ground_rel_decl = function
| RelDecl.LocalDef (_,b,_) -> is_ground_term evd (EConstr.of_constr b)
| _ -> true in
let is_ground_named_decl = function
| NamedDecl.LocalDef (_,b,_) -> is_ground_term evd (EConstr.of_constr b)
| _ -> true in
List.for_all is_ground_rel_decl (rel_context env) &&
List.for_all is_ground_named_decl (named_context env)
(* Memoization is safe since evar_map and environ are applicative
structures *)
let memo f =
let m = ref None in
fun x y -> match !m with
| Some (x', y', r) when x == x' && y == y' -> r
| _ -> let r = f x y in m := Some (x, y, r); r
let is_ground_env = memo is_ground_env
(* Return the head evar if any *)
exception NoHeadEvar
let head_evar sigma c =
(** FIXME: this breaks if using evar-insensitive code *)
let c = EConstr.Unsafe.to_constr c in
let rec hrec c = match kind_of_term c with
| Evar (evk,_) -> evk
| Case (_,_,c,_) -> hrec c
| App (c,_) -> hrec c
| Cast (c,_,_) -> hrec c
| Proj (p, c) -> hrec c
| _ -> raise NoHeadEvar
in
hrec c
(* Expand head evar if any (currently consider only applications but I
guess it should consider Case too) *)
let whd_head_evar_stack sigma c =
let rec whrec (c, l) =
match EConstr.kind sigma c with
| Cast (c,_,_) -> whrec (c, l)
| App (f,args) -> whrec (f, args :: l)
| c -> (EConstr.of_kind c, l)
in
whrec (c, [])
let whd_head_evar sigma c =
let open EConstr in
let (f, args) = whd_head_evar_stack sigma c in
match args with
| [arg] -> mkApp (f, arg)
| _ -> mkApp (f, Array.concat args)
(**********************)
(* Creating new metas *)
(**********************)
let meta_counter_summary_name = "meta counter"
(* Generator of metavariables *)
let new_meta =
let meta_ctr = Summary.ref 0 ~name:meta_counter_summary_name in
fun () -> incr meta_ctr; !meta_ctr
let mk_new_meta () = EConstr.mkMeta(new_meta())
(* The list of non-instantiated existential declarations (order is important) *)
let non_instantiated sigma =
let listev = Evd.undefined_map sigma in
Evar.Map.smartmap (fun evi -> nf_evar_info sigma evi) listev
(************************)
(* Manipulating filters *)
(************************)
let make_pure_subst evi args =
snd (List.fold_right
(fun decl (args,l) ->
match args with
| a::rest -> (rest, (NamedDecl.get_id decl, a)::l)
| _ -> anomaly (Pp.str "Instance does not match its signature"))
(evar_filtered_context evi) (Array.rev_to_list args,[]))
(*------------------------------------*
* functional operations on evar sets *
*------------------------------------*)
(* [push_rel_context_to_named_context] builds the defining context and the
* initial instance of an evar. If the evar is to be used in context
*
* Gamma = a1 ... an xp ... x1
* \- named part -/ \- de Bruijn part -/
*
* then the x1...xp are turned into variables so that the evar is declared in
* context
*
* a1 ... an xp ... x1
* \----------- named part ------------/
*
* but used applied to the initial instance "a1 ... an Rel(p) ... Rel(1)"
* so that ev[a1:=a1 ... an:=an xp:=Rel(p) ... x1:=Rel(1)] is correctly typed
* in context Gamma.
*
* Remark 1: The instance is reverted in practice (i.e. Rel(1) comes first)
* Remark 2: If some of the ai or xj are definitions, we keep them in the
* instance. This is necessary so that no unfolding of local definitions
* happens when inferring implicit arguments (consider e.g. the problem
* "x:nat; x':=x; f:forall y, y=y -> Prop |- f _ (refl_equal x')" which
* produces the equation "?y[x,x']=?y[x,x']" =? "x'=x'": we want
* the hole to be instantiated by x', not by x (which would have been
* the case in [invert_definition] if x' had disappeared from the instance).
* Note that at any time, if, in some context env, the instance of
* declaration x:A is t and the instance of definition x':=phi(x) is u, then
* we have the property that u and phi(t) are convertible in env.
*)
let csubst_subst (k, s) c =
(** Safe because this is a substitution *)
let c = EConstr.Unsafe.to_constr c in
let rec subst n c = match Constr.kind c with
| Rel m ->
if m <= n then c
else if m - n <= k then EConstr.Unsafe.to_constr (Int.Map.find (k - m + n) s)
else mkRel (m - k)
| _ -> Constr.map_with_binders succ subst n c
in
let c = if k = 0 then c else subst 0 c in
EConstr.of_constr c
let subst2 subst vsubst c =
csubst_subst subst (EConstr.Vars.replace_vars vsubst c)
let next_ident_away id avoid =
let avoid id = Id.Set.mem id avoid in
next_ident_away_from id avoid
let next_name_away na avoid =
let avoid id = Id.Set.mem id avoid in
let id = match na with Name id -> id | Anonymous -> default_non_dependent_ident in
next_ident_away_from id avoid
type csubst = int * EConstr.t Int.Map.t
let empty_csubst = (0, Int.Map.empty)
type ext_named_context =
csubst * (Id.t * EConstr.constr) list *
Id.Set.t * EConstr.named_context
let push_var id (n, s) =
let s = Int.Map.add n (EConstr.mkVar id) s in
(succ n, s)
let push_rel_decl_to_named_context sigma decl (subst, vsubst, avoid, nc) =
let open EConstr in
let open Vars in
let map_decl f d =
NamedDecl.map_constr f d
in
let replace_var_named_declaration id0 id decl =
let id' = NamedDecl.get_id decl in
let id' = if Id.equal id0 id' then id else id' in
let vsubst = [id0 , mkVar id] in
decl |> NamedDecl.set_id id' |> map_decl (replace_vars vsubst)
in
let extract_if_neq id = function
| Anonymous -> None
| Name id' when id_ord id id' = 0 -> None
| Name id' -> Some id'
in
let na = RelDecl.get_name decl in
let id =
(* ppedrot: we want to infer nicer names for the refine tactic, but
keeping at the same time backward compatibility in other code
using this function. For now, we only attempt to preserve the
old behaviour of Program, but ultimately, one should do something
about this whole name generation problem. *)
if Flags.is_program_mode () then next_name_away na avoid
else
(** id_of_name_using_hdchar only depends on the rel context which is empty
here *)
next_ident_away (id_of_name_using_hdchar empty_env sigma (RelDecl.get_type decl) na) avoid
in
match extract_if_neq id na with
| Some id0 when not (is_section_variable id0) ->
(* spiwack: if [id<>id0], rather than introducing a new
binding named [id], we will keep [id0] (the name given
by the user) and rename [id0] into [id] in the named
context. Unless [id] is a section variable. *)
let subst = (fst subst, Int.Map.map (replace_vars [id0,mkVar id]) (snd subst)) in
let vsubst = (id0,mkVar id)::vsubst in
let d = decl |> NamedDecl.of_rel_decl (fun _ -> id0) |> map_decl (subst2 subst vsubst) in
let nc = List.map (replace_var_named_declaration id0 id) nc in
(push_var id0 subst, vsubst, Id.Set.add id avoid, d :: nc)
| _ ->
(* spiwack: if [id0] is a section variable renaming it is
incorrect. We revert to a less robust behaviour where
the new binder has name [id]. Which amounts to the same
behaviour than when [id=id0]. *)
let d = decl |> NamedDecl.of_rel_decl (fun _ -> id) |> map_decl (subst2 subst vsubst) in
(push_var id subst, vsubst, Id.Set.add id avoid, d :: nc)
let push_rel_context_to_named_context env sigma typ =
(* compute the instances relative to the named context and rel_context *)
let open Context.Named.Declaration in
let open EConstr in
let ids = List.map get_id (named_context env) in
let inst_vars = List.map mkVar ids in
if List.is_empty (Environ.rel_context env) then
(named_context_val env, typ, inst_vars, empty_csubst, [])
else
let avoid = List.fold_right Id.Set.add ids Id.Set.empty in
let inst_rels = List.rev (rel_list 0 (nb_rel env)) in
(* move the rel context to a named context and extend the named instance *)
(* with vars of the rel context *)
(* We do keep the instances corresponding to local definition (see above) *)
let (subst, vsubst, _, env) =
Context.Rel.fold_outside (fun d acc -> push_rel_decl_to_named_context sigma d acc)
(rel_context env) ~init:(empty_csubst, [], avoid, named_context env) in
(val_of_named_context env, subst2 subst vsubst typ, inst_rels@inst_vars, subst, vsubst)
(*------------------------------------*
* Entry points to define new evars *
*------------------------------------*)
let default_source = Loc.tag @@ Evar_kinds.InternalHole
let restrict_evar evd evk filter candidates =
let evd = Sigma.to_evar_map evd in
let candidates = Option.map (fun l -> List.map EConstr.Unsafe.to_constr l) candidates in
let evd, evk' = Evd.restrict evk filter ?candidates evd in
Sigma.Unsafe.of_pair (evk', Evd.declare_future_goal evk' evd)
let new_pure_evar_full evd evi =
let evd = Sigma.to_evar_map evd in
let (evd, evk) = Evd.new_evar evd evi in
let evd = Evd.declare_future_goal evk evd in
Sigma.Unsafe.of_pair (evk, evd)
let new_pure_evar sign evd ?(src=default_source) ?(filter = Filter.identity) ?candidates ?(store = Store.empty) ?naming ?(principal=false) typ =
let typ = EConstr.Unsafe.to_constr typ in
let evd = Sigma.to_evar_map evd in
let candidates = Option.map (fun l -> List.map EConstr.Unsafe.to_constr l) candidates in
let default_naming = Misctypes.IntroAnonymous in
let naming = Option.default default_naming naming in
let name = match naming with
| Misctypes.IntroAnonymous -> None
| Misctypes.IntroIdentifier id -> Some id
| Misctypes.IntroFresh id ->
let has_name id = try let _ = Evd.evar_key id evd in true with Not_found -> false in
let id = Namegen.next_ident_away_from id has_name in
Some id
in
let evi = {
evar_hyps = sign;
evar_concl = typ;
evar_body = Evar_empty;
evar_filter = filter;
evar_source = src;
evar_candidates = candidates;
evar_extra = store; }
in
let (evd, newevk) = Evd.new_evar evd ?name evi in
let evd =
if principal then Evd.declare_principal_goal newevk evd
else Evd.declare_future_goal newevk evd
in
Sigma.Unsafe.of_pair (newevk, evd)
let new_evar_instance sign evd typ ?src ?filter ?candidates ?store ?naming ?principal instance =
let open EConstr in
assert (not !Flags.debug ||
List.distinct (ids_of_named_context (named_context_of_val sign)));
let Sigma (newevk, evd, p) = new_pure_evar sign evd ?src ?filter ?candidates ?store ?naming ?principal typ in
Sigma (mkEvar (newevk,Array.of_list instance), evd, p)
(* [new_evar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let new_evar env evd ?src ?filter ?candidates ?store ?naming ?principal typ =
let sign,typ',instance,subst,vsubst = push_rel_context_to_named_context env (Sigma.to_evar_map evd) typ in
let map c = subst2 subst vsubst c in
let candidates = Option.map (fun l -> List.map map l) candidates in
let instance =
match filter with
| None -> instance
| Some filter -> Filter.filter_list filter instance in
new_evar_instance sign evd typ' ?src ?filter ?candidates ?store ?naming ?principal instance
let new_evar_unsafe env evd ?src ?filter ?candidates ?store ?naming ?principal typ =
let evd = Sigma.Unsafe.of_evar_map evd in
let Sigma (evk, evd, _) = new_evar env evd ?src ?filter ?candidates ?store ?naming ?principal typ in
(Sigma.to_evar_map evd, evk)
let new_type_evar env evd ?src ?filter ?naming ?principal rigid =
let Sigma (s, evd', p) = Sigma.new_sort_variable rigid evd in
let Sigma (e, evd', q) = new_evar env evd' ?src ?filter ?naming ?principal (EConstr.mkSort s) in
Sigma ((e, s), evd', p +> q)
let e_new_type_evar env evdref ?src ?filter ?naming ?principal rigid =
let sigma = Sigma.Unsafe.of_evar_map !evdref in
let Sigma (c, sigma, _) = new_type_evar env sigma ?src ?filter ?naming ?principal rigid in
let sigma = Sigma.to_evar_map sigma in
evdref := sigma;
c
let new_Type ?(rigid=Evd.univ_flexible) env evd =
let open EConstr in
let Sigma (s, sigma, p) = Sigma.new_sort_variable rigid evd in
Sigma (mkSort s, sigma, p)
let e_new_Type ?(rigid=Evd.univ_flexible) env evdref =
let evd', s = new_sort_variable rigid !evdref in
evdref := evd'; EConstr.mkSort s
(* The same using side-effect *)
let e_new_evar env evdref ?(src=default_source) ?filter ?candidates ?store ?naming ?principal ty =
let (evd',ev) = new_evar_unsafe env !evdref ~src:src ?filter ?candidates ?store ?naming ?principal ty in
evdref := evd';
ev
(* This assumes an evar with identity instance and generalizes it over only
the de Bruijn part of the context *)
let generalize_evar_over_rels sigma (ev,args) =
let open EConstr in
let evi = Evd.find sigma ev in
let sign = named_context_of_val evi.evar_hyps in
List.fold_left2
(fun (c,inst as x) a d ->
if isRel sigma a then (mkNamedProd_or_LetIn d c,a::inst) else x)
(EConstr.of_constr evi.evar_concl,[]) (Array.to_list args) sign
(************************************)
(* Removing a dependency in an evar *)
(************************************)
type clear_dependency_error =
| OccurHypInSimpleClause of Id.t option
| EvarTypingBreak of existential
exception ClearDependencyError of Id.t * clear_dependency_error
let cleared = Store.field ()
exception Depends of Id.t
let rec check_and_clear_in_constr env evdref err ids global c =
(* returns a new constr where all the evars have been 'cleaned'
(ie the hypotheses ids have been removed from the contexts of
evars). [global] should be true iff there is some variable of [ids] which
is a section variable *)
match kind_of_term c with
| Var id' ->
if Id.Set.mem id' ids then raise (ClearDependencyError (id', err)) else c
| ( Const _ | Ind _ | Construct _ ) ->
let () = if global then
let check id' =
if Id.Set.mem id' ids then
raise (ClearDependencyError (id',err))
in
Id.Set.iter check (Environ.vars_of_global env c)
in
c
| Evar (evk,l as ev) ->
if Evd.is_defined !evdref evk then
(* If evk is already defined we replace it by its definition *)
let nc = Evd.existential_value !evdref ev in
(check_and_clear_in_constr env evdref err ids global nc)
else
(* We check for dependencies to elements of ids in the
evar_info corresponding to e and in the instance of
arguments. Concurrently, we build a new evar
corresponding to e where hypotheses of ids have been
removed *)
let evi = Evd.find_undefined !evdref evk in
let ctxt = Evd.evar_filtered_context evi in
let ctxt = List.map (fun d -> map_named_decl EConstr.of_constr d) ctxt in
let (rids,filter) =
List.fold_right2
(fun h a (ri,filter) ->
try
(* Check if some id to clear occurs in the instance
a of rid in ev and remember the dependency *)
let check id = if Id.Set.mem id ids then raise (Depends id) in
let () = Id.Set.iter check (collect_vars !evdref (EConstr.of_constr a)) in
(* Check if some rid to clear in the context of ev
has dependencies in another hyp of the context of ev
and transitively remember the dependency *)
let check id _ =
if occur_var_in_decl (Global.env ()) !evdref id h
then raise (Depends id)
in
let () = Id.Map.iter check ri in
(* No dependency at all, we can keep this ev's context hyp *)
(ri, true::filter)
with Depends id -> (Id.Map.add (NamedDecl.get_id h) id ri, false::filter))
ctxt (Array.to_list l) (Id.Map.empty,[]) in
(* Check if some rid to clear in the context of ev has dependencies
in the type of ev and adjust the source of the dependency *)
let _nconcl =
try
let nids = Id.Map.domain rids in
let global = Id.Set.exists is_section_variable nids in
check_and_clear_in_constr env evdref (EvarTypingBreak ev) nids global (evar_concl evi)
with ClearDependencyError (rid,err) ->
raise (ClearDependencyError (Id.Map.find rid rids,err)) in
if Id.Map.is_empty rids then c
else
let origfilter = Evd.evar_filter evi in
let filter = Evd.Filter.apply_subfilter origfilter filter in
let evd = Sigma.Unsafe.of_evar_map !evdref in
let Sigma (_, evd, _) = restrict_evar evd evk filter None in
let evd = Sigma.to_evar_map evd in
evdref := evd;
(* spiwack: hacking session to mark the old [evk] as having been "cleared" *)
let evi = Evd.find !evdref evk in
let extra = evi.evar_extra in
let extra' = Store.set extra cleared true in
let evi' = { evi with evar_extra = extra' } in
evdref := Evd.add !evdref evk evi' ;
(* spiwack: /hacking session *)
Evd.existential_value !evdref ev
| _ -> map_constr (check_and_clear_in_constr env evdref err ids global) c
let clear_hyps_in_evi_main env evdref hyps terms ids =
(* clear_hyps_in_evi erases hypotheses ids in hyps, checking if some
hypothesis does not depend on a element of ids, and erases ids in
the contexts of the evars occurring in evi *)
let terms = List.map EConstr.Unsafe.to_constr terms in
let global = Id.Set.exists is_section_variable ids in
let terms =
List.map (check_and_clear_in_constr env evdref (OccurHypInSimpleClause None) ids global) terms in
let nhyps =
let check_context decl =
let err = OccurHypInSimpleClause (Some (NamedDecl.get_id decl)) in
NamedDecl.map_constr (check_and_clear_in_constr env evdref err ids global) decl
in
let check_value vk = match force_lazy_val vk with
| None -> vk
| Some (_, d) ->
if (Id.Set.for_all (fun e -> not (Id.Set.mem e d)) ids) then
(* v does depend on any of ids, it's ok *)
vk
else
(* v depends on one of the cleared hyps:
we forget the computed value *)
dummy_lazy_val ()
in
remove_hyps ids check_context check_value hyps
in
(nhyps,List.map EConstr.of_constr terms)
let clear_hyps_in_evi env evdref hyps concl ids =
match clear_hyps_in_evi_main env evdref hyps [concl] ids with
| (nhyps,[nconcl]) -> (nhyps,nconcl)
| _ -> assert false
let clear_hyps2_in_evi env evdref hyps t concl ids =
match clear_hyps_in_evi_main env evdref hyps [t;concl] ids with
| (nhyps,[t;nconcl]) -> (nhyps,t,nconcl)
| _ -> assert false
(* spiwack: a few functions to gather evars on which goals depend. *)
let queue_set q is_dependent set =
Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set
let queue_term q is_dependent c =
queue_set q is_dependent (evars_of_term c)
let process_dependent_evar q acc evm is_dependent e =
let evi = Evd.find evm e in
(* Queues evars appearing in the types of the goal (conclusion, then
hypotheses), they are all dependent. *)
queue_term q true evi.evar_concl;
List.iter begin fun decl ->
let open NamedDecl in
queue_term q true (NamedDecl.get_type decl);
match decl with
| LocalAssum _ -> ()
| LocalDef (_,b,_) -> queue_term q true b
end (Environ.named_context_of_val evi.evar_hyps);
match evi.evar_body with
| Evar_empty ->
if is_dependent then Evar.Map.add e None acc else acc
| Evar_defined b ->
let subevars = evars_of_term b in
(* evars appearing in the definition of an evar [e] are marked
as dependent when [e] is dependent itself: if [e] is a
non-dependent goal, then, unless they are reach from another
path, these evars are just other non-dependent goals. *)
queue_set q is_dependent subevars;
if is_dependent then Evar.Map.add e (Some subevars) acc else acc
let gather_dependent_evars q evm =
let acc = ref Evar.Map.empty in
while not (Queue.is_empty q) do
let (is_dependent,e) = Queue.pop q in
(* checks if [e] has already been added to [!acc] *)
begin if not (Evar.Map.mem e !acc) then
acc := process_dependent_evar q !acc evm is_dependent e
end
done;
!acc
let gather_dependent_evars evm l =
let q = Queue.create () in
List.iter (fun a -> Queue.add (false,a) q) l;
gather_dependent_evars q evm
(* /spiwack *)
(** [advance sigma g] returns [Some g'] if [g'] is undefined and is
the current avatar of [g] (for instance [g] was changed by [clear]
into [g']). It returns [None] if [g] has been (partially)
solved. *)
(* spiwack: [advance] is probably performance critical, and the good
behaviour of its definition may depend sensitively to the actual
definition of [Evd.find]. Currently, [Evd.find] starts looking for
a value in the heap of undefined variable, which is small. Hence in
the most common case, where [advance] is applied to an unsolved
goal ([advance] is used to figure if a side effect has modified the
goal) it terminates quickly. *)
let rec advance sigma evk =
let evi = Evd.find sigma evk in
match evi.evar_body with
| Evar_empty -> Some evk
| Evar_defined v ->
if Option.default false (Store.get evi.evar_extra cleared) then
let (evk,_) = Term.destEvar v in
advance sigma evk
else
None
(** The following functions return the set of undefined evars
contained in the object, the defined evars being traversed.
This is roughly a combination of the previous functions and
[nf_evar]. *)
let undefined_evars_of_term evd t =
let rec evrec acc c =
match EConstr.kind evd c with
| Evar (n, l) ->
let acc = Evar.Set.add n acc in
Array.fold_left evrec acc l
| _ -> EConstr.fold evd evrec acc c
in
evrec Evar.Set.empty t
let undefined_evars_of_named_context evd nc =
Context.Named.fold_outside
(NamedDecl.fold_constr (fun c s -> Evar.Set.union s (undefined_evars_of_term evd (EConstr.of_constr c))))
nc
~init:Evar.Set.empty
let undefined_evars_of_evar_info evd evi =
Evar.Set.union (undefined_evars_of_term evd (EConstr.of_constr evi.evar_concl))
(Evar.Set.union
(match evi.evar_body with
| Evar_empty -> Evar.Set.empty
| Evar_defined b -> undefined_evars_of_term evd (EConstr.of_constr b))
(undefined_evars_of_named_context evd
(named_context_of_val evi.evar_hyps)))
(* spiwack: this is a more complete version of
{!Termops.occur_evar}. The latter does not look recursively into an
[evar_map]. If unification only need to check superficially, tactics
do not have this luxury, and need the more complete version. *)
let occur_evar_upto sigma n c =
let c = EConstr.Unsafe.to_constr c in
let rec occur_rec c = match kind_of_term c with
| Evar (sp,_) when Evar.equal sp n -> raise Occur
| Evar e -> Option.iter occur_rec (existential_opt_value sigma e)
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
(* We don't try to guess in which sort the type should be defined, since
any type has type Type. May cause some trouble, but not so far... *)
let judge_of_new_Type evd =
let open EConstr in
let Sigma (s, evd', p) = Sigma.new_univ_variable univ_rigid evd in
Sigma ({ uj_val = mkSort (Type s); uj_type = mkSort (Type (Univ.super s)) }, evd', p)
let subterm_source evk (loc,k) =
let evk = match k with
| Evar_kinds.SubEvar (evk) -> evk
| _ -> evk in
(loc,Evar_kinds.SubEvar evk)
(** [eq_constr_univs_test sigma1 sigma2 t u] tests equality of [t] and
[u] up to existential variable instantiation and equalisable
universes. The term [t] is interpreted in [sigma1] while [u] is
interpreted in [sigma2]. The universe constraints in [sigma2] are
assumed to be an extention of those in [sigma1]. *)
let eq_constr_univs_test sigma1 sigma2 t u =
(* spiwack: mild code duplication with {!Evd.eq_constr_univs}. *)
let open Evd in
let fold cstr sigma =
try Some (add_universe_constraints sigma cstr)
with Univ.UniverseInconsistency _ | UniversesDiffer -> None
in
let ans =
Universes.eq_constr_univs_infer_with
(fun t -> kind_of_term_upto sigma1 t)
(fun u -> kind_of_term_upto sigma2 u)
(universes sigma2) fold t u sigma2
in
match ans with None -> false | Some _ -> true
type type_constraint = EConstr.types option
type val_constraint = EConstr.constr option
|