aboutsummaryrefslogtreecommitdiffhomepage
path: root/engine/eConstr.ml
blob: 095521e252a630e9795697fd5e0670022a243973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

open CSig
open CErrors
open Util
open Names
open Term
open Context
open Evd

module API :
sig
type t
val kind : Evd.evar_map -> t -> (t, t) Constr.kind_of_term
val kind_upto : Evd.evar_map -> constr -> (constr, types) Constr.kind_of_term
val of_kind : (t, t) Constr.kind_of_term -> t
val of_constr : Constr.t -> t
val unsafe_to_constr : t -> Constr.t
val unsafe_eq : (t, Constr.t) eq
end =
struct

type t = Constr.t

let safe_evar_value sigma ev =
  try Some (Evd.existential_value sigma ev)
  with NotInstantiatedEvar | Not_found -> None

let rec kind sigma c =
  let c0 = Constr.kind c in
  match c0 with
  | Evar (evk, args) ->
    (match safe_evar_value sigma (evk, args) with
        Some c -> kind sigma c
      | None -> c0)
  | Sort (Type u) ->
    let u' = Evd.normalize_universe sigma u in
    if u' == u then c0 else Sort (Type u')
  | Const (c', u) when not (Univ.Instance.is_empty u) ->
    let u' = Evd.normalize_universe_instance sigma u in
    if u' == u then c0 else Const (c', u')
  | Ind (i, u) when not (Univ.Instance.is_empty u) ->
    let u' = Evd.normalize_universe_instance sigma u in
    if u' == u then c0 else Ind (i, u')
  | Construct (co, u) when not (Univ.Instance.is_empty u) ->
    let u' = Evd.normalize_universe_instance sigma u in
    if u' == u then c0 else Construct (co, u')
  | App (c, args) when isEvar c ->
    (** Enforce smart constructor invariant on applications *)
    let ev = destEvar c in
    begin match safe_evar_value sigma ev with
    | None -> c0
    | Some c -> kind sigma (mkApp (c, args))
    end
  | _ -> c0

let kind_upto = kind
let of_kind = Constr.of_kind
let of_constr c = c
let unsafe_to_constr c = c
let unsafe_eq = Refl

end

include API

type types = t
type constr = t
type existential = t pexistential
type fixpoint = (t, t) pfixpoint
type cofixpoint = (t, t) pcofixpoint
type unsafe_judgment = (constr, types) Environ.punsafe_judgment
type unsafe_type_judgment = types Environ.punsafe_type_judgment

let mkProp = of_kind (Sort Sorts.prop)
let mkSet = of_kind (Sort Sorts.set)
let mkType u = of_kind (Sort (Sorts.Type u))
let mkRel n = of_kind (Rel n)
let mkVar id = of_kind (Var id)
let mkMeta n = of_kind (Meta n)
let mkEvar e = of_kind (Evar e)
let mkSort s = of_kind (Sort s)
let mkCast (b, k, t) = of_kind (Cast (b, k, t))
let mkProd (na, t, u) = of_kind (Prod (na, t, u))
let mkLambda (na, t, c) = of_kind (Lambda (na, t, c))
let mkLetIn (na, b, t, c) = of_kind (LetIn (na, b, t, c))
let mkApp (f, arg) = of_kind (App (f, arg))
let mkConstU pc = of_kind (Const pc)
let mkIndU pi = of_kind (Ind pi)
let mkConstructU pc = of_kind (Construct pc)
let mkCase (ci, c, r, p) = of_kind (Case (ci, c, r, p))
let mkFix f = of_kind (Fix f)
let mkCoFix f = of_kind (CoFix f)
let mkProj (p, c) = of_kind (Proj (p, c))

let applist (f, arg) = mkApp (f, Array.of_list arg)

let isRel sigma c = match kind sigma c with Rel _ -> true | _ -> false
let isVar sigma c = match kind sigma c with Var _ -> true | _ -> false
let isInd sigma c = match kind sigma c with Ind _ -> true | _ -> false
let isEvar sigma c = match kind sigma c with Evar _ -> true | _ -> false
let isMeta sigma c = match kind sigma c with Meta _ -> true | _ -> false
let isSort sigma c = match kind sigma c with Sort _ -> true | _ -> false
let isCast sigma c = match kind sigma c with Cast _ -> true | _ -> false
let isApp sigma c = match kind sigma c with App _ -> true | _ -> false
let isLambda sigma c = match kind sigma c with Lambda _ -> true | _ -> false
let isLetIn sigma c = match kind sigma c with LetIn _ -> true | _ -> false
let isProd sigma c = match kind sigma c with Prod _ -> true | _ -> false
let isConst sigma c = match kind sigma c with Const _ -> true | _ -> false
let isConstruct sigma c = match kind sigma c with Construct _ -> true | _ -> false
let isFix sigma c = match kind sigma c with Fix _ -> true | _ -> false
let isCoFix sigma c = match kind sigma c with CoFix _ -> true | _ -> false
let isCase sigma c = match kind sigma c with Case _ -> true | _ -> false
let isProj sigma c = match kind sigma c with Proj _ -> true | _ -> false
let isVarId sigma id c =
  match kind sigma c with Var id' -> Id.equal id id' | _ -> false

let destRel sigma c = match kind sigma c with
| Rel p -> p
| _ -> raise DestKO

let destVar sigma c = match kind sigma c with
| Var p -> p
| _ -> raise DestKO

let destInd sigma c = match kind sigma c with
| Ind p -> p
| _ -> raise DestKO

let destEvar sigma c = match kind sigma c with
| Evar p -> p
| _ -> raise DestKO

let destMeta sigma c = match kind sigma c with
| Meta p -> p
| _ -> raise DestKO

let destSort sigma c = match kind sigma c with
| Sort p -> p
| _ -> raise DestKO

let destCast sigma c = match kind sigma c with
| Cast (c, k, t) -> (c, k, t)
| _ -> raise DestKO

let destApp sigma c = match kind sigma c with
| App (f, a) -> (f, a)
| _ -> raise DestKO

let destLambda sigma c = match kind sigma c with
| Lambda (na, t, c) -> (na, t, c)
| _ -> raise DestKO

let destLetIn sigma c = match kind sigma c with
| LetIn (na, b, t, c) -> (na, b, t, c)
| _ -> raise DestKO

let destProd sigma c = match kind sigma c with
| Prod (na, t, c) -> (na, t, c)
| _ -> raise DestKO

let destConst sigma c = match kind sigma c with
| Const p -> p
| _ -> raise DestKO

let destConstruct sigma c = match kind sigma c with
| Construct p -> p
| _ -> raise DestKO

let destFix sigma c = match kind sigma c with
| Fix p -> p
| _ -> raise DestKO

let destCoFix sigma c = match kind sigma c with
| CoFix p -> p
| _ -> raise DestKO

let destCase sigma c = match kind sigma c with
| Case (ci, t, c, p) -> (ci, t, c, p)
| _ -> raise DestKO

let destProj sigma c = match kind sigma c with
| Proj (p, c) -> (p, c)
| _ -> raise DestKO

let decompose_app sigma c =
  match kind sigma c with
    | App (f,cl) -> (f, Array.to_list cl)
    | _ -> (c,[])

let local_assum (na, t) =
  let open Rel.Declaration in
  LocalAssum (na, unsafe_to_constr t)

let local_def (na, b, t) =
  let open Rel.Declaration in
  LocalDef (na, unsafe_to_constr b, unsafe_to_constr t)

let decompose_lam sigma c =
  let rec lamdec_rec l c = match kind sigma c with
    | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
    | Cast (c,_,_)     -> lamdec_rec l c
    | _                -> l,c
  in
  lamdec_rec [] c

let decompose_lam_assum sigma c =
  let rec lamdec_rec l c =
    match kind sigma c with
    | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (local_assum (x,t)) l) c
    | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (local_def (x,b,t)) l) c
    | Cast (c,_,_)      -> lamdec_rec l c
    | _               -> l,c
  in
  lamdec_rec Context.Rel.empty c

let decompose_lam_n_assum sigma n c =
  if n < 0 then
    error "decompose_lam_n_assum: integer parameter must be positive";
  let rec lamdec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (local_assum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (local_def (x,b,t)) l) n c
      | Cast (c,_,_)      -> lamdec_rec l n c
      | c -> error "decompose_lam_n_assum: not enough abstractions"
  in
  lamdec_rec Context.Rel.empty n c

let decompose_lam_n_decls sigma n =
  if n < 0 then
    error "decompose_lam_n_decls: integer parameter must be positive";
  let rec lamdec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Lambda (x,t,c)  -> lamdec_rec (Context.Rel.add (local_assum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (local_def (x,b,t)) l) (n-1) c
      | Cast (c,_,_)      -> lamdec_rec l n c
      | c -> error "decompose_lam_n_decls: not enough abstractions"
  in
  lamdec_rec Context.Rel.empty n

let decompose_prod sigma c =
  let rec proddec_rec l c = match kind sigma c with
    | Prod (x,t,c) -> proddec_rec ((x,t)::l) c
    | Cast (c,_,_)     -> proddec_rec l c
    | _                -> l,c
  in
  proddec_rec [] c

let decompose_prod_assum sigma c =
  let rec proddec_rec l c =
    match kind sigma c with
    | Prod (x,t,c)  -> proddec_rec (Context.Rel.add (local_assum (x,t)) l) c
    | LetIn (x,b,t,c) -> proddec_rec (Context.Rel.add (local_def (x,b,t)) l) c
    | Cast (c,_,_)      -> proddec_rec l c
    | _               -> l,c
  in
  proddec_rec Context.Rel.empty c

let decompose_prod_n_assum sigma n c =
  if n < 0 then
    error "decompose_prod_n_assum: integer parameter must be positive";
  let rec prodec_rec l n c =
    if Int.equal n 0 then l,c
    else
      match kind sigma c with
      | Prod (x,t,c)    -> prodec_rec (Context.Rel.add (local_assum (x,t)) l) (n-1) c
      | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (local_def (x,b,t)) l) (n-1) c
      | Cast (c,_,_)      -> prodec_rec l n c
      | c -> error "decompose_prod_n_assum: not enough assumptions"
  in
  prodec_rec Context.Rel.empty n c

let existential_type sigma (evk, args) =
  of_constr (existential_type sigma (evk, Array.map unsafe_to_constr args))

let map sigma f c = match kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> c
  | Cast (b,k,t) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkCast (b', k, t')
  | Prod (na,t,b) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkProd (na, t', b')
  | Lambda (na,t,b) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkLambda (na, t', b')
  | LetIn (na,b,t,k) ->
      let b' = f b in
      let t' = f t in
      let k' = f k in
      if b'==b && t' == t && k'==k then c
      else mkLetIn (na, b', t', k')
  | App (b,l) ->
      let b' = f b in
      let l' = Array.smartmap f l in
      if b'==b && l'==l then c
      else mkApp (b', l')
  | Proj (p,t) ->
      let t' = f t in
      if t' == t then c
      else mkProj (p, t')
  | Evar (e,l) ->
      let l' = Array.smartmap f l in
      if l'==l then c
      else mkEvar (e, l')
  | Case (ci,p,b,bl) ->
      let b' = f b in
      let p' = f p in
      let bl' = Array.smartmap f bl in
      if b'==b && p'==p && bl'==bl then c
      else mkCase (ci, p', b', bl')
  | Fix (ln,(lna,tl,bl)) ->
      let tl' = Array.smartmap f tl in
      let bl' = Array.smartmap f bl in
      if tl'==tl && bl'==bl then c
      else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl)) ->
      let tl' = Array.smartmap f tl in
      let bl' = Array.smartmap f bl in
      if tl'==tl && bl'==bl then c
      else mkCoFix (ln,(lna,tl',bl'))

let map_with_binders sigma g f l c0 = match kind sigma c0 with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> c0
  | Cast (c, k, t) ->
    let c' = f l c in
    let t' = f l t in
    if c' == c && t' == t then c0
    else mkCast (c', k, t')
  | Prod (na, t, c) ->
    let t' = f l t in
    let c' = f (g l) c in
    if t' == t && c' == c then c0
    else mkProd (na, t', c')
  | Lambda (na, t, c) ->
    let t' = f l t in
    let c' = f (g l) c in
    if t' == t && c' == c then c0
    else mkLambda (na, t', c')
  | LetIn (na, b, t, c) ->
    let b' = f l b in
    let t' = f l t in
    let c' = f (g l) c in
    if b' == b && t' == t && c' == c then c0
    else mkLetIn (na, b', t', c')
  | App (c, al) ->
    let c' = f l c in
    let al' = CArray.Fun1.smartmap f l al in
    if c' == c && al' == al then c0
    else mkApp (c', al')
  | Proj (p, t) ->
    let t' = f l t in
    if t' == t then c0
    else mkProj (p, t')
  | Evar (e, al) ->
    let al' = CArray.Fun1.smartmap f l al in
    if al' == al then c0
    else mkEvar (e, al')
  | Case (ci, p, c, bl) ->
    let p' = f l p in
    let c' = f l c in
    let bl' = CArray.Fun1.smartmap f l bl in
    if p' == p && c' == c && bl' == bl then c0
    else mkCase (ci, p', c', bl')
  | Fix (ln, (lna, tl, bl)) ->
    let tl' = CArray.Fun1.smartmap f l tl in
    let l' = iterate g (Array.length tl) l in
    let bl' = CArray.Fun1.smartmap f l' bl in
    if tl' == tl && bl' == bl then c0
    else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl)) ->
    let tl' = CArray.Fun1.smartmap f l tl in
    let l' = iterate g (Array.length tl) l in
    let bl' = CArray.Fun1.smartmap f l' bl in
    mkCoFix (ln,(lna,tl',bl'))

let iter sigma f c = match kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> ()
  | Cast (c,_,t) -> f c; f t
  | Prod (_,t,c) -> f t; f c
  | Lambda (_,t,c) -> f t; f c
  | LetIn (_,b,t,c) -> f b; f t; f c
  | App (c,l) -> f c; Array.iter f l
  | Proj (p,c) -> f c
  | Evar (_,l) -> Array.iter f l
  | Case (_,p,c,bl) -> f p; f c; Array.iter f bl
  | Fix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl
  | CoFix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl

let iter_with_full_binders sigma g f n c = match kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> ()
  | Cast (c,_,t) -> f n c; f n t
  | Prod (na,t,c) -> f n t; f (g (local_assum (na, t)) n) c
  | Lambda (na,t,c) -> f n t; f (g (local_assum (na, t)) n) c
  | LetIn (na,b,t,c) -> f n b; f n t; f (g (local_def (na, b, t)) n) c
  | App (c,l) -> f n c; CArray.Fun1.iter f n l
  | Evar (_,l) -> CArray.Fun1.iter f n l
  | Case (_,p,c,bl) -> f n p; f n c; CArray.Fun1.iter f n bl
  | Proj (p,c) -> f n c
  | Fix (_,(lna,tl,bl)) ->
    Array.iter (f n) tl;
    let n' = Array.fold_left2 (fun n na t -> g (local_assum (na,t)) n) n lna tl in
    Array.iter (f n') bl
  | CoFix (_,(lna,tl,bl)) ->
    Array.iter (f n) tl;
    let n' = Array.fold_left2 (fun n na t -> g (local_assum (na,t)) n) n lna tl in
    Array.iter (f n') bl

let iter_with_binders sigma g f n c =
  iter_with_full_binders sigma (fun _ acc -> g acc) f n c

let fold sigma f acc c = match kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _) -> acc
  | Cast (c,_,t) -> f (f acc c) t
  | Prod (_,t,c) -> f (f acc t) c
  | Lambda (_,t,c) -> f (f acc t) c
  | LetIn (_,b,t,c) -> f (f (f acc b) t) c
  | App (c,l) -> Array.fold_left f (f acc c) l
  | Proj (p,c) -> f acc c
  | Evar (_,l) -> Array.fold_left f acc l
  | Case (_,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
  | Fix (_,(lna,tl,bl)) ->
    Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl
  | CoFix (_,(lna,tl,bl)) ->
    Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl

let to_constr sigma t =
  let rec map c = Constr.map map (Constr.of_kind (kind_upto sigma c)) in
  map (unsafe_to_constr t)

let compare_gen k eq_inst eq_sort eq_constr c1 c2 =
  (c1 == c2) || Constr.compare_head_gen_with k k eq_inst eq_sort eq_constr c1 c2

let eq_constr sigma c1 c2 =
  let kind c = kind_upto sigma c in
  let rec eq_constr c1 c2 =
    compare_gen kind (fun _ -> Univ.Instance.equal) Sorts.equal eq_constr c1 c2
  in
  eq_constr (unsafe_to_constr c1) (unsafe_to_constr c2)

let eq_constr_nounivs sigma c1 c2 =
  let kind c = kind_upto sigma c in
  let rec eq_constr c1 c2 =
    compare_gen kind (fun _ _ _ -> true) (fun _ _ -> true) eq_constr c1 c2
  in
  eq_constr (unsafe_to_constr c1) (unsafe_to_constr c2)

(** TODO: factorize with universes.ml *)
let test_constr_universes sigma leq m n =
  let open Universes in
  let kind c = kind_upto sigma c in
  if m == n then Some Constraints.empty
  else 
    let cstrs = ref Constraints.empty in
    let eq_universes strict l l' = 
      cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in
    let eq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else (cstrs := Constraints.add 
	      (Sorts.univ_of_sort s1,UEq,Sorts.univ_of_sort s2) !cstrs; 
	    true)
    in
    let leq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else 
	(cstrs := Constraints.add 
	   (Sorts.univ_of_sort s1,ULe,Sorts.univ_of_sort s2) !cstrs; 
	 true)
    in
    let rec eq_constr' m n = compare_gen kind eq_universes eq_sorts eq_constr' m n in
    let res =
      if leq then
        let rec compare_leq m n =
          Constr.compare_head_gen_leq_with kind kind eq_universes leq_sorts eq_constr' leq_constr' m n
        and leq_constr' m n = m == n || compare_leq m n in
        compare_leq m n
      else
        Constr.compare_head_gen_with kind kind eq_universes eq_sorts eq_constr' m n
    in
    if res then Some !cstrs else None

let eq_constr_universes sigma m n =
  test_constr_universes sigma false (unsafe_to_constr m) (unsafe_to_constr n)
let leq_constr_universes sigma m n =
  test_constr_universes sigma true (unsafe_to_constr m) (unsafe_to_constr n)

let compare_head_gen_proj env sigma equ eqs eqc' m n =
  let kind c = kind_upto sigma c in
  match kind_upto sigma m, kind_upto sigma n with
  | Proj (p, c), App (f, args)
  | App (f, args), Proj (p, c) -> 
      (match kind_upto sigma f with
      | Const (p', u) when Constant.equal (Projection.constant p) p' -> 
          let pb = Environ.lookup_projection p env in
          let npars = pb.Declarations.proj_npars in
	  if Array.length args == npars + 1 then
	    eqc' c args.(npars)
	  else false
      | _ -> false)
  | _ -> Constr.compare_head_gen_with kind kind equ eqs eqc' m n

let eq_constr_universes_proj env sigma m n =
  let open Universes in
  if m == n then Some Constraints.empty
  else 
    let cstrs = ref Constraints.empty in
    let eq_universes strict l l' = 
      cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in
    let eq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else
	(cstrs := Constraints.add 
	   (Sorts.univ_of_sort s1, UEq, Sorts.univ_of_sort s2) !cstrs;
	 true)
    in
    let rec eq_constr' m n = 
      m == n ||	compare_head_gen_proj env sigma eq_universes eq_sorts eq_constr' m n
    in
    let res = eq_constr' (unsafe_to_constr m) (unsafe_to_constr n) in
    if res then Some !cstrs else None

module Vars =
struct
exception LocalOccur
let to_constr = unsafe_to_constr

(** Operations that commute with evar-normalization *)
let lift n c = of_constr (Vars.lift n (to_constr c))
let liftn n m c = of_constr (Vars.liftn n m (to_constr c))

let substnl subst n c = of_constr (Vars.substnl (List.map to_constr subst) n (to_constr c))
let substl subst c = of_constr (Vars.substl (List.map to_constr subst) (to_constr c))
let subst1 c r = of_constr (Vars.subst1 (to_constr c) (to_constr r))

let replace_vars subst c =
  let map (id, c) = (id, to_constr c) in
  of_constr (Vars.replace_vars (List.map map subst) (to_constr c))
let substn_vars n subst c = of_constr (Vars.substn_vars n subst (to_constr c))
let subst_vars subst c = of_constr (Vars.subst_vars subst (to_constr c))
let subst_var subst c = of_constr (Vars.subst_var subst (to_constr c))

(** Operations that dot NOT commute with evar-normalization *)
let noccurn sigma n term =
  let rec occur_rec n c = match kind sigma c with
    | Rel m -> if Int.equal m n then raise LocalOccur
    | _ -> iter_with_binders sigma succ occur_rec n c
  in
  try occur_rec n term; true with LocalOccur -> false

let noccur_between sigma n m term =
  let rec occur_rec n c = match kind sigma c with
    | Rel p -> if n<=p && p<n+m then raise LocalOccur
    | _        -> iter_with_binders sigma succ occur_rec n c
  in
  try occur_rec n term; true with LocalOccur -> false

let closedn sigma n c =
  let rec closed_rec n c = match kind sigma c with
    | Rel m -> if m>n then raise LocalOccur
    | _ -> iter_with_binders sigma succ closed_rec n c
  in
  try closed_rec n c; true with LocalOccur -> false

let closed0 sigma c = closedn sigma 0 c

end

let rec isArity sigma c =
  match kind sigma c with
  | Prod (_,_,c)    -> isArity sigma c
  | LetIn (_,b,_,c) -> isArity sigma (Vars.subst1 b c)
  | Cast (c,_,_)      -> isArity sigma c
  | Sort _          -> true
  | _               -> false

let mkProd_or_LetIn decl c =
  let open Context.Rel.Declaration in
  match decl with
  | LocalAssum (na,t) -> mkProd (na, of_constr t, c)
  | LocalDef (na,b,t) -> mkLetIn (na, of_constr b, of_constr t, c)

let mkLambda_or_LetIn decl c =
  let open Context.Rel.Declaration in
  match decl with
  | LocalAssum (na,t) -> mkLambda (na, of_constr t, c)
  | LocalDef (na,b,t) -> mkLetIn (na, of_constr b, of_constr t, c)

let it_mkProd_or_LetIn t ctx = List.fold_left (fun c d -> mkProd_or_LetIn d c) t ctx
let it_mkLambda_or_LetIn t ctx = List.fold_left (fun c d -> mkLambda_or_LetIn d c) t ctx

module Unsafe =
struct
let to_constr = unsafe_to_constr
let eq = unsafe_eq
end