aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/sphinx/proof-engine/detailed-tactic-examples.rst
blob: 84810ddba57aff337c4d7afc9510833303ba2f70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
.. _detailedexamplesoftactics:

Detailed examples of tactics
============================

This chapter presents detailed examples of certain tactics, to
illustrate their behavior.

.. _dependent-induction:

dependent induction
-------------------

The tactics ``dependent induction`` and ``dependent destruction`` are another
solution for inverting inductive predicate instances and potentially
doing induction at the same time. It is based on the ``BasicElim`` tactic
of Conor McBride which works by abstracting each argument of an
inductive instance by a variable and constraining it by equalities
afterwards. This way, the usual induction and destruct tactics can be
applied to the abstracted instance and after simplification of the
equalities we get the expected goals.

The abstracting tactic is called generalize_eqs and it takes as
argument an hypothesis to generalize. It uses the JMeq datatype
defined in Coq.Logic.JMeq, hence we need to require it before. For
example, revisiting the first example of the inversion documentation:

.. coqtop:: in

   Require Import Coq.Logic.JMeq.

   Inductive Le : nat -> nat -> Set :=
        | LeO : forall n:nat, Le 0 n
        | LeS : forall n m:nat, Le n m -> Le (S n) (S m).

   Variable P : nat -> nat -> Prop.

   Goal forall n m:nat, Le (S n) m -> P n m.

   intros n m H.

.. coqtop:: all

   generalize_eqs H.

The index ``S n`` gets abstracted by a variable here, but a corresponding
equality is added under the abstract instance so that no information
is actually lost. The goal is now almost amenable to do induction or
case analysis. One should indeed first move ``n`` into the goal to
strengthen it before doing induction, or ``n`` will be fixed in the
inductive hypotheses (this does not matter for case analysis). As a
rule of thumb, all the variables that appear inside constructors in
the indices of the hypothesis should be generalized. This is exactly
what the ``generalize_eqs_vars`` variant does:

.. coqtop:: all

   generalize_eqs_vars H.
   induction H.

As the hypothesis itself did not appear in the goal, we did not need
to use an heterogeneous equality to relate the new hypothesis to the
old one (which just disappeared here). However, the tactic works just
as well in this case, e.g.:

.. coqtop:: in

   Variable Q : forall (n m : nat), Le n m -> Prop.
   Goal forall n m (p : Le (S n) m), Q (S n) m p.

.. coqtop:: all

   intros n m p.
   generalize_eqs_vars p.

One drawback of this approach is that in the branches one will have to
substitute the equalities back into the instance to get the right
assumptions. Sometimes injection of constructors will also be needed
to recover the needed equalities. Also, some subgoals should be
directly solved because of inconsistent contexts arising from the
constraints on indexes. The nice thing is that we can make a tactic
based on discriminate, injection and variants of substitution to
automatically do such simplifications (which may involve the K axiom).
This is what the ``simplify_dep_elim`` tactic from ``Coq.Program.Equality``
does. For example, we might simplify the previous goals considerably:

.. coqtop:: all

   Require Import Coq.Program.Equality.

.. coqtop:: all

   induction p ; simplify_dep_elim.

The higher-order tactic ``do_depind`` defined in ``Coq.Program.Equality``
takes a tactic and combines the building blocks we have seen with it:
generalizing by equalities calling the given tactic with the
generalized induction hypothesis as argument and cleaning the subgoals
with respect to equalities. Its most important instantiations
are ``dependent induction`` and ``dependent destruction`` that do induction or
simply case analysis on the generalized hypothesis. For example we can
redo what we’ve done manually with dependent destruction:

.. coqtop:: in

   Require Import Coq.Program.Equality.

.. coqtop:: in

   Lemma ex : forall n m:nat, Le (S n) m -> P n m.

.. coqtop:: in

   intros n m H.

.. coqtop:: all

   dependent destruction H.

This gives essentially the same result as inversion. Now if the
destructed hypothesis actually appeared in the goal, the tactic would
still be able to invert it, contrary to dependent inversion. Consider
the following example on vectors:

.. coqtop:: in

   Require Import Coq.Program.Equality.

.. coqtop:: in

   Set Implicit Arguments.

.. coqtop:: in

   Variable A : Set.

.. coqtop:: in

   Inductive vector : nat -> Type :=
            | vnil : vector 0
            | vcons : A -> forall n, vector n -> vector (S n).

.. coqtop:: in

   Goal forall n, forall v : vector (S n),
            exists v' : vector n, exists a : A, v = vcons a v'.

.. coqtop:: in

   intros n v.

.. coqtop:: all

   dependent destruction v.

In this case, the ``v`` variable can be replaced in the goal by the
generalized hypothesis only when it has a type of the form ``vector (S n)``,
that is only in the second case of the destruct. The first one is
dismissed because ``S n <> 0``.


A larger example
~~~~~~~~~~~~~~~~

Let’s see how the technique works with induction on inductive
predicates on a real example. We will develop an example application
to the theory of simply-typed lambda-calculus formalized in a
dependently-typed style:

.. coqtop:: in

   Inductive type : Type :=
            | base : type
            | arrow : type -> type -> type.

.. coqtop:: in

   Notation " t --> t' " := (arrow t t') (at level 20, t' at next level).

.. coqtop:: in

   Inductive ctx : Type :=
            | empty : ctx
            | snoc : ctx -> type -> ctx.

.. coqtop:: in

   Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).

.. coqtop:: in

   Fixpoint conc (G D : ctx) : ctx :=
            match D with
            | empty => G
            | snoc D' x => snoc (conc G D') x
            end.

.. coqtop:: in

   Notation " G ; D " := (conc G D) (at level 20).

.. coqtop:: in

   Inductive term : ctx -> type -> Type :=
            | ax : forall G tau, term (G, tau) tau
            | weak : forall G tau,
                       term G tau -> forall tau', term (G, tau') tau
            | abs : forall G tau tau',
                      term (G , tau) tau' -> term G (tau --> tau')
            | app : forall G tau tau',
                      term G (tau --> tau') -> term G tau -> term G tau'.

We have defined types and contexts which are snoc-lists of types. We
also have a ``conc`` operation that concatenates two contexts. The ``term``
datatype represents in fact the possible typing derivations of the
calculus, which are isomorphic to the well-typed terms, hence the
name. A term is either an application of:


+ the axiom rule to type a reference to the first variable in a
  context
+ the weakening rule to type an object in a larger context
+ the abstraction or lambda rule to type a function
+ the application to type an application of a function to an argument


Once we have this datatype we want to do proofs on it, like weakening:

.. coqtop:: in undo

   Lemma weakening : forall G D tau, term (G ; D) tau -> 
                     forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing
derivation because it will forget about the ``G ; D`` constraint appearing
in the instance. A solution would be to rewrite the goal as:

.. coqtop:: in

   Lemma weakening' : forall G' tau, term G' tau ->
                      forall G D, (G ; D) = G' ->
                      forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the
right induction loading (putting ``G`` and ``D`` after the inducted-on
hypothesis), the proof will go through, but it is a very tedious
process. One is also forced to make a wrapper lemma to get back the
more natural statement. The ``dependent induction`` tactic alleviates this
trouble by doing all of this plumbing of generalizing and substituting
back automatically. Indeed we can simply write:

.. coqtop:: in

   Require Import Coq.Program.Tactics.

.. coqtop:: in

   Lemma weakening : forall G D tau, term (G ; D) tau ->
                     forall tau', term (G , tau' ; D) tau.

.. coqtop:: in

   Proof with simpl in * ; simpl_depind ; auto.

.. coqtop:: in

   intros G D tau H. dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is
a list of variables appearing in the instance that should be
generalized in the goal, so that they can vary in the induction
hypotheses. By default, all variables appearing inside constructors
(except in a parameter position) of the instantiated hypothesis will
be generalized automatically but one can always give the list
explicitly.

.. coqtop:: all

   Show.

The ``simpl_depind`` tactic includes an automatic tactic that tries to
simplify equalities appearing at the beginning of induction
hypotheses, generally using trivial applications of ``reflexivity``. In
cases where the equality is not between constructor forms though, one
must help the automation by giving some arguments, using the
``specialize`` tactic for example.

.. coqtop:: in

   destruct D... apply weak; apply ax. apply ax.

.. coqtop:: in

   destruct D...

.. coqtop:: all

   Show.

.. coqtop:: all

   specialize (IHterm G0 empty eq_refl).

Once the induction hypothesis has been narrowed to the right equality,
it can be used directly.

.. coqtop:: all

   apply weak, IHterm.

If there is an easy first-order solution to these equations as in this
subgoal, the ``specialize_eqs`` tactic can be used instead of giving
explicit proof terms:

.. coqtop:: all

   specialize_eqs IHterm.

This concludes our example.

See also: The :tacn:`induction`, :tacn:`case`, and :tacn:`inversion` tactics.


autorewrite
-----------

Here are two examples of ``autorewrite`` use. The first one ( *Ackermann
function*) shows actually a quite basic use where there is no
conditional rewriting. The second one ( *Mac Carthy function*)
involves conditional rewritings and shows how to deal with them using
the optional tactic of the ``Hint Rewrite`` command.


Example 1: Ackermann function

.. coqtop:: in

   Reset Initial.

.. coqtop:: in

   Require Import Arith.

.. coqtop:: in

   Variable Ack : nat -> nat -> nat.

.. coqtop:: in

   Axiom Ack0 : forall m:nat, Ack 0 m = S m.
   Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
   Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).

.. coqtop:: in

   Hint Rewrite Ack0 Ack1 Ack2 : base0.

.. coqtop:: all

   Lemma ResAck0 : Ack 3 2 = 29.

.. coqtop:: all

   autorewrite with base0 using try reflexivity.

Example 2: Mac Carthy function

.. coqtop:: in

   Require Import Omega.

.. coqtop:: in

   Variable g : nat -> nat -> nat.

.. coqtop:: in

   Axiom g0 : forall m:nat, g 0 m = m.
   Axiom g1 : forall n m:nat, (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
   Axiom g2 : forall n m:nat, (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).


.. coqtop:: in

   Hint Rewrite g0 g1 g2 using omega : base1.

.. coqtop:: in

   Lemma Resg0 : g 1 110 = 100.

.. coqtop:: out

   Show.

.. coqtop:: all

   autorewrite with base1 using reflexivity || simpl.

.. coqtop:: all

   Lemma Resg1 : g 1 95 = 91.

.. coqtop:: all

   autorewrite with base1 using reflexivity || simpl.


.. _quote:

quote
-----

The tactic ``quote`` allows using Barendregt’s so-called 2-level approach
without writing any ML code. Suppose you have a language ``L`` of
'abstract terms' and a type ``A`` of 'concrete terms' and a function ``f : L -> A``.
If ``L`` is a simple inductive datatype and ``f`` a simple fixpoint,
``quote f`` will replace the head of current goal by a convertible term of
the form ``(f t)``. ``L`` must have a constructor of type: ``A -> L``.

Here is an example:

.. coqtop:: in

   Require Import Quote.

.. coqtop:: all

   Parameters A B C : Prop.

.. coqtop:: all

   Inductive formula : Type :=
            | f_and : formula -> formula -> formula (* binary constructor *)
            | f_or : formula -> formula -> formula
            | f_not : formula -> formula (* unary constructor *)
            | f_true : formula (* 0-ary constructor *)
            | f_const : Prop -> formula (* constructor for constants *).

.. coqtop:: all

   Fixpoint interp_f (f:formula) : Prop :=
            match f with
            | f_and f1 f2 => interp_f f1 /\ interp_f f2
            | f_or f1 f2 => interp_f f1 \/ interp_f f2
            | f_not f1 => ~ interp_f f1
            | f_true => True
            | f_const c => c
            end.

.. coqtop:: all

   Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).

.. coqtop:: all

   quote interp_f.

The algorithm to perform this inversion is: try to match the term with
right-hand sides expression of ``f``. If there is a match, apply the
corresponding left-hand side and call yourself recursively on sub-
terms. If there is no match, we are at a leaf: return the
corresponding constructor (here ``f_const``) applied to the term.


Error messages:


#. quote: not a simple fixpoint

   Happens when ``quote`` is not able to perform inversion properly.



Introducing variables map
~~~~~~~~~~~~~~~~~~~~~~~~~

The normal use of quote is to make proofs by reflection: one defines a
function ``simplify : formula -> formula`` and proves a theorem
``simplify_ok: (f:formula)(interp_f (simplify f)) -> (interp_f f)``. Then,
one can simplify formulas by doing:

.. coqtop:: in

       quote interp_f.
       apply simplify_ok.
       compute.

But there is a problem with leafs: in the example above one cannot
write a function that implements, for example, the logical
simplifications :math:`A \wedge A \rightarrow A` or :math:`A \wedge
\lnot A \rightarrow \mathrm{False}`. This is because ``Prop`` is
impredicative.

It is better to use that type of formulas:

.. coqtop:: in reset

   Require Import Quote.

.. coqtop:: in

   Parameters A B C : Prop.

.. coqtop:: all

   Inductive formula : Set :=
            | f_and : formula -> formula -> formula
            | f_or : formula -> formula -> formula
            | f_not : formula -> formula
            | f_true : formula
            | f_atom : index -> formula.

``index`` is defined in module ``Quote``. Equality on that type is
decidable so we are able to simplify :math:`A \wedge A` into :math:`A`
at the abstract level.

When there are variables, there are bindings, and ``quote`` also
provides a type ``(varmap A)`` of bindings from index to any set
``A``, and a function ``varmap_find`` to search in such maps. The
interpretation function also has another argument, a variables map:

.. coqtop:: all

   Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop :=
            match f with
            | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
            | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
            | f_not f1 => ~ interp_f vm f1
            | f_true => True
            | f_atom i => varmap_find True i vm
            end.

``quote`` handles this second case properly:

.. coqtop:: all

   Goal A /\ (B \/ A) /\ (A \/ ~ B).

.. coqtop:: all

   quote interp_f.

It builds ``vm`` and ``t`` such that ``(f vm t)`` is convertible with the
conclusion of current goal.


Combining variables and constants
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One can have both variables and constants in abstracts terms; for
example, this is the case for the :tacn:`ring` tactic. Then one must provide to
``quote`` a list of *constructors of constants*. For example, if the list
is ``[O S]`` then closed natural numbers will be considered as constants
and other terms as variables.

Example:

.. coqtop:: in

   Inductive formula : Type :=
            | f_and : formula -> formula -> formula
            | f_or : formula -> formula -> formula
            | f_not : formula -> formula
            | f_true : formula
            | f_const : Prop -> formula (* constructor for constants *)
            | f_atom : index -> formula.

.. coqtop:: in

   Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop :=
            match f with
            | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
            | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
            | f_not f1 => ~ interp_f vm f1
            | f_true => True
            | f_const c => c
            | f_atom i => varmap_find True i vm
            end.

.. coqtop:: in

   Goal A /\ (A \/ True) /\ ~ B /\ (C <-> C).

.. coqtop:: all

   quote interp_f [ A B ].


.. coqtop:: all

   Undo.

.. coqtop:: all

   quote interp_f [ B C iff ].

Warning: Since function inversion is undecidable in general case,
don’t expect miracles from it!

.. tacv:: quote @ident in @term using @tactic

   ``tactic`` must be a functional tactic (starting with ``fun x =>``) and
   will be called with the quoted version of term according to ``ident``.

.. tacv:: quote @ident [{+ @ident}] in @term using @tactic          

   Same as above, but will use the additional ``ident`` list to chose
   which subterms are constants (see above).

See also: comments of source file ``plugins/quote/quote.ml``

See also: the :tacn:`ring` tactic.


Using the tactical language
---------------------------


About the cardinality of the set of natural numbers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A first example which shows how to use pattern matching over the
proof contexts is the proof that natural numbers have more than two
elements. The proof of such a lemma can be done as follows:

.. coqtop:: in

   Lemma card_nat : ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
   Proof.

.. coqtop:: in

   red; intros (x, (y, Hy)).

.. coqtop:: in

   elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;

   match goal with
   | [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
            cut (b = c); [ discriminate | transitivity a; auto ]
   end.

.. coqtop:: in

   Qed.

We can notice that all the (very similar) cases coming from the three
eliminations (with three distinct natural numbers) are successfully
solved by a match goal structure and, in particular, with only one
pattern (use of non-linear matching).


Permutation on closed lists
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another more complex example is the problem of permutation on closed
lists. The aim is to show that a closed list is a permutation of
another one.

First, we define the permutation predicate as shown here:

.. coqtop:: in

   Section Sort.

.. coqtop:: in

   Variable A : Set.

.. coqtop:: in

   Inductive permut : list A -> list A -> Prop :=
            | permut_refl : forall l, permut l l
            | permut_cons : forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
            | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
            | permut_trans : forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.

.. coqtop:: in

   End Sort.

A more complex example is the problem of permutation on closed lists.
The aim is to show that a closed list is a permutation of another one.
First, we define the permutation predicate as shown above.


.. coqtop:: none

   Require Import List.


.. coqtop:: all

   Ltac Permut n :=
            match goal with
            | |- (permut _ ?l ?l) => apply permut_refl
            | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
                let newn := eval compute in (length l1) in
                (apply permut_cons; Permut newn)
            | |- (permut ?A (?a :: ?l1) ?l2) =>
                match eval compute in n with
                | 1 => fail
                | _ =>
                    let l1' := constr:(l1 ++ a :: nil) in
                    (apply (permut_trans A (a :: l1) l1' l2);
                    [ apply permut_append | compute; Permut (pred n) ])
                end
            end.


.. coqtop:: all

   Ltac PermutProve :=
            match goal with
            | |- (permut _ ?l1 ?l2) =>
                match eval compute in (length l1 = length l2) with
                | (?n = ?n) => Permut n
                end
            end.

Next, we can write naturally the tactic and the result can be seen
above. We can notice that we use two top level definitions
``PermutProve`` and ``Permut``. The function to be called is
``PermutProve`` which computes the lengths of the two lists and calls
``Permut`` with the length if the two lists have the same
length. ``Permut`` works as expected. If the two lists are equal, it
concludes. Otherwise, if the lists have identical first elements, it
applies ``Permut`` on the tail of the lists.  Finally, if the lists
have different first elements, it puts the first element of one of the
lists (here the second one which appears in the permut predicate) at
the end if that is possible, i.e., if the new first element has been
at this place previously. To verify that all rotations have been done
for a list, we use the length of the list as an argument for Permut
and this length is decremented for each rotation down to, but not
including, 1 because for a list of length ``n``, we can make exactly
``n−1`` rotations to generate at most ``n`` distinct lists. Here, it
must be noticed that we use the natural numbers of Coq for the
rotation counter. In :ref:`ltac-syntax`, we can
see that it is possible to use usual natural numbers but they are only
used as arguments for primitive tactics and they cannot be handled, in
particular, we cannot make computations with them. So, a natural
choice is to use Coq data structures so that Coq makes the
computations (reductions) by eval compute in and we can get the terms
back by match.

With ``PermutProve``, we can now prove lemmas as follows:

.. coqtop:: in

   Lemma permut_ex1 : permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

.. coqtop:: in

   Proof. PermutProve. Qed.

.. coqtop:: in

   Lemma permut_ex2 : permut nat
            (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
            (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).

   Proof. PermutProve. Qed.



Deciding intuitionistic propositional logic
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _decidingintuitionistic1:

.. coqtop:: all

   Ltac Axioms :=
            match goal with
            | |- True => trivial
            | _:False |- _ => elimtype False; assumption
            | _:?A |- ?A => auto
            end.

.. _decidingintuitionistic2:

.. coqtop:: all

   Ltac DSimplif :=
            repeat
            (intros;
            match goal with
            | id:(~ _) |- _ => red in id
            | id:(_ /\ _) |- _ =>
            elim id; do 2 intro; clear id
            | id:(_ \/ _) |- _ =>
                elim id; intro; clear id
            | id:(?A /\ ?B -> ?C) |- _ =>
                cut (A -> B -> C);
                [ intro | intros; apply id; split; assumption ]
            | id:(?A \/ ?B -> ?C) |- _ =>
                cut (B -> C);
                [ cut (A -> C);
                [ intros; clear id
            | intro; apply id; left; assumption ]
            | intro; apply id; right; assumption ]
            | id0:(?A -> ?B),id1:?A |- _ =>
                cut B; [ intro; clear id0 | apply id0; assumption ]
            | |- (_ /\ _) => split
            | |- (~ _) => red
            end).

.. coqtop:: all

   Ltac TautoProp :=
            DSimplif;
            Axioms ||
            match goal with
            | id:((?A -> ?B) -> ?C) |- _ =>
                cut (B -> C);
                [ intro; cut (A -> B);
                [ intro; cut C;
                [ intro; clear id | apply id; assumption ]
            | clear id ]
            | intro; apply id; intro; assumption ]; TautoProp
            | id:(~ ?A -> ?B) |- _ =>
                cut (False -> B);
                [ intro; cut (A -> False);
                [ intro; cut B;
                [ intro; clear id | apply id; assumption ]
            | clear id ]
            | intro; apply id; red; intro; assumption ]; TautoProp
            | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
            end.

The pattern matching on goals allows a complete and so a powerful
backtracking when returning tactic values. An interesting application
is the problem of deciding intuitionistic propositional logic.
Considering the contraction-free sequent calculi LJT* of Roy Dyckhoff
:cite:`Dyc92`, it is quite natural to code such a tactic
using the tactic language as shown on figures: :ref:`Deciding
intuitionistic propositions (1) <decidingintuitionistic1>` and
:ref:`Deciding intuitionistic propositions (2)
<decidingintuitionistic2>`. The tactic ``Axioms`` tries to conclude
using usual axioms. The tactic ``DSimplif`` applies all the reversible
rules of Dyckhoff’s system. Finally, the tactic ``TautoProp`` (the
main tactic to be called) simplifies with ``DSimplif``, tries to
conclude with ``Axioms`` and tries several paths using the
backtracking rules (one of the four Dyckhoff’s rules for the left
implication to get rid of the contraction and the right or).

For example, with ``TautoProp``, we can prove tautologies like those:

.. coqtop:: in

   Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.

.. coqtop:: in

   Proof. TautoProp. Qed.

.. coqtop:: in

   Lemma tauto_ex2 :
            forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.

.. coqtop:: in

   Proof. TautoProp. Qed.


Deciding type isomorphisms
~~~~~~~~~~~~~~~~~~~~~~~~~~

A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply
typed λ-calculus with Cartesian product and unit type (see, for
example, :cite:`RC95`). The axioms of this λ-calculus are given below.

.. coqtop:: in reset

   Open Scope type_scope.

.. coqtop:: in

   Section Iso_axioms.

.. coqtop:: in

   Variables A B C : Set.

.. coqtop:: in

   Axiom Com : A * B = B * A.

   Axiom Ass : A * (B * C) = A * B * C.

   Axiom Cur : (A * B -> C) = (A -> B -> C).

   Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).

   Axiom P_unit : A * unit = A.

   Axiom AR_unit : (A -> unit) = unit.

   Axiom AL_unit : (unit -> A) = A.

.. coqtop:: in

   Lemma Cons : B = C -> A * B = A * C.

   Proof.

   intro Heq; rewrite Heq; reflexivity.

   Qed.

.. coqtop:: in

   End Iso_axioms.



.. _typeisomorphism1:

.. coqtop:: all

   Ltac DSimplif trm :=
            match trm with
            | (?A * ?B * ?C) =>
                rewrite <- (Ass A B C); try MainSimplif
            | (?A * ?B -> ?C) =>
                rewrite (Cur A B C); try MainSimplif
            | (?A -> ?B * ?C) =>
                rewrite (Dis A B C); try MainSimplif
            | (?A * unit) =>
                rewrite (P_unit A); try MainSimplif
            | (unit * ?B) =>
                rewrite (Com unit B); try MainSimplif
            | (?A -> unit) =>
                rewrite (AR_unit A); try MainSimplif
            | (unit -> ?B) =>
                rewrite (AL_unit B); try MainSimplif
            | (?A * ?B) =>
                (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
            | (?A -> ?B) =>
                (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
            end
            with MainSimplif :=
                match goal with
                | |- (?A = ?B) => try DSimplif A; try DSimplif B
                end.

.. coqtop:: all

   Ltac Length trm :=
            match trm with
            | (_ * ?B) => let succ := Length B in constr:(S succ)
            | _ => constr:(1)
            end.

.. coqtop:: all

   Ltac assoc := repeat rewrite <- Ass.


.. _typeisomorphism2:

.. coqtop:: all

   Ltac DoCompare n :=
            match goal with
            | [ |- (?A = ?A) ] => reflexivity
            | [ |- (?A * ?B = ?A * ?C) ] =>
                apply Cons; let newn := Length B in
                DoCompare newn
            | [ |- (?A * ?B = ?C) ] =>
                match eval compute in n with
                | 1 => fail
                | _ =>
                    pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
                end
            end.

.. coqtop:: all

   Ltac CompareStruct :=
            match goal with
            | [ |- (?A = ?B) ] =>
                let l1 := Length A
                with l2 := Length B in
                match eval compute in (l1 = l2) with
                | (?n = ?n) => DoCompare n
                end
            end.

.. coqtop:: all

   Ltac IsoProve := MainSimplif; CompareStruct.


The tactic to judge equalities modulo this axiomatization can be
written as shown on these figures: :ref:`type isomorphism tactic (1)
<typeisomorphism1>` and :ref:`type isomorphism tactic (2)
<typeisomorphism2>`.  The algorithm is quite simple. Types are reduced
using axioms that can be oriented (this done by ``MainSimplif``). The
normal forms are sequences of Cartesian products without Cartesian
product in the left component. These normal forms are then compared
modulo permutation of the components (this is done by
``CompareStruct``). The main tactic to be called and realizing this
algorithm isIsoProve.

Here are examples of what can be solved by ``IsoProve``.

.. coqtop:: in

   Lemma isos_ex1 :
       forall A B:Set, A * unit * B = B * (unit * A).
   Proof.
   intros; IsoProve.
   Qed.

.. coqtop:: in

   Lemma isos_ex2 :
       forall A B C:Set,
         (A * unit -> B * (C * unit)) = (A * unit -> (C -> unit) * C) * (unit -> A -> B).
   Proof.
   intros; IsoProve.
   Qed.