1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
.. _ micromega:
Micromega: tactics for solving arithmetic goals over ordered rings
==================================================================
:Authors: Frédéric Besson and Evgeny Makarov
Short description of the tactics
--------------------------------
The Psatz module (``Require Import Psatz.``) gives access to several
tactics for solving arithmetic goals over :math:`\mathbb{Z}`, :math:`\mathbb{Q}`, and :math:`\mathbb{R}` [#]_.
It also possible to get the tactics for integers by a ``Require Import Lia``,
rationals ``Require Import Lqa`` and reals ``Require Import Lra``.
+ :tacn:`lia` is a decision procedure for linear integer arithmetic;
+ :tacn:`nia` is an incomplete proof procedure for integer non-linear
arithmetic;
+ :tacn:`lra` is a decision procedure for linear (real or rational) arithmetic;
+ :tacn:`nra` is an incomplete proof procedure for non-linear (real or
rational) arithmetic;
+ :tacn:`psatz` ``D n`` where ``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}`, and
``n`` is an optional integer limiting the proof search depth
is an incomplete proof procedure for non-linear arithmetic.
It is based on John Harrison’s HOL Light
driver to the external prover `csdp` [#]_. Note that the `csdp` driver is
generating a *proof cache* which makes it possible to rerun scripts
even without `csdp`.
The tactics solve propositional formulas parameterized by atomic
arithmetic expressions interpreted over a domain :math:`D` ∈ {ℤ, ℚ, ℝ}.
The syntax of the formulas is the following:
.. productionlist:: `F`
F : A ∣ P ∣ True ∣ False ∣ F 1 ∧ F 2 ∣ F 1 ∨ F 2 ∣ F 1 ↔ F 2 ∣ F 1 → F 2 ∣ ¬ F
A : p 1 = p 2 ∣ p 1 > p 2 ∣ p 1 < p 2 ∣ p 1 ≥ p 2 ∣ p 1 ≤ p 2
p : c ∣ x ∣ −p ∣ p 1 − p 2 ∣ p 1 + p 2 ∣ p 1 × p 2 ∣ p ^ n
where :math:`c` is a numeric constant, :math:`x \in D` is a numeric variable, the
operators :math:`−, +, ×` are respectively subtraction, addition, and product;
:math:`p ^ n` is exponentiation by a constant :math:`n`, :math:`P` is an arbitrary proposition.
For :math:`\mathbb{Q}`, equality is not Leibniz equality = but the equality of
rationals ==.
For :math:`\mathbb{Z}` (resp. :math:`\mathbb{Q}`), :math:`c` ranges over integer constants (resp. rational
constants). For :math:`\mathbb{R}`, the tactic recognizes as real constants the
following expressions:
::
c ::= R0 | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR q | Rdiv(c,c) | Rinv c
where :math:`z` is a constant in :math:`\mathbb{Z}` and :math:`q` is a constant in :math:`\mathbb{Q}`.
This includes integer constants written using the decimal notation, *i.e.*, c%R.
*Positivstellensatz* refutations
--------------------------------
The name `psatz` is an abbreviation for *positivstellensatz* – literally
"positivity theorem" – which generalizes Hilbert’s *nullstellensatz*. It
relies on the notion of Cone. Given a (finite) set of polynomials :math:`S`,
:math:`\mathit{Cone}(S)` is inductively defined as the smallest set of polynomials
closed under the following rules:
:math:`\begin{array}{l}
\dfrac{p \in S}{p \in \mathit{Cone}(S)} \quad
\dfrac{}{p^2 \in \mathit{Cone}(S)} \quad
\dfrac{p_1 \in \mathit{Cone}(S) \quad p_2 \in \mathit{Cone}(S) \quad
\Join \in \{+,*\}} {p_1 \Join p_2 \in \mathit{Cone}(S)}\\
\end{array}`
The following theorem provides a proof principle for checking that a
set of polynomial inequalities does not have solutions [#]_.
.. _psatz_thm:
**Theorem (Psatz)**. Let :math:`S` be a set of polynomials.
If :math:`-1` belongs to :math:`\mathit{Cone}(S)`, then the conjunction
:math:`\bigwedge_{p \in S} p\ge 0` is unsatisfiable.
A proof based on this theorem is called a *positivstellensatz*
refutation. The tactics work as follows. Formulas are normalized into
conjunctive normal form :math:`\bigwedge_i C_i` where :math:`C_i` has the
general form :math:`(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False})` and
:math:`\Join \in \{>,\ge,=\}` for :math:`D\in \{\mathbb{Q},\mathbb{R}\}` and
:math:`\Join \in \{\ge, =\}` for :math:`\mathbb{Z}`.
For each conjunct :math:`C_i`, the tactic calls a oracle which searches for
:math:`-1` within the cone. Upon success, the oracle returns a *cone
expression* that is normalized by the ring tactic (see :ref:`theringandfieldtacticfamilies`)
and checked to be :math:`-1`.
`lra`: a decision procedure for linear real and rational arithmetic
-------------------------------------------------------------------
.. tacn:: lra
:name: lra
This tactic is searching for *linear* refutations using Fourier
elimination [#]_. As a result, this tactic explores a subset of the *Cone*
defined as
:math:`\mathit{LinCone}(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p~\right|~\alpha_p \mbox{ are positive constants} \right\}`
The deductive power of `lra` is the combined deductive power of
`ring_simplify` and `fourier`. There is also an overlap with the field
tactic *e.g.*, :math:`x = 10 * x / 10` is solved by `lra`.
`lia`: a tactic for linear integer arithmetic
---------------------------------------------
.. tacn:: lia
:name: lia
This tactic offers an alternative to the :tacn:`omega` and :tacn:`romega`
tactics. Roughly speaking, the deductive power of lia is the combined deductive
power of :tacn:`ring_simplify` and :tacn:`omega`. However, it solves linear
goals that :tacn:`omega` and :tacn:`romega` do not solve, such as the following
so-called *omega nightmare* :cite:`TheOmegaPaper`.
.. coqtop:: in
Goal forall x y,
27 <= 11 * x + 13 * y <= 45 ->
-10 <= 7 * x - 9 * y <= 4 -> False.
The estimation of the relative efficiency of :tacn:`lia` *vs* :tacn:`omega` and
:tacn:`romega` is under evaluation.
High level view of `lia`
~~~~~~~~~~~~~~~~~~~~~~~~
Over :math:`\mathbb{R}`, *positivstellensatz* refutations are a complete proof
principle [#]_. However, this is not the case over :math:`\mathbb{Z}`. Actually,
*positivstellensatz* refutations are not even sufficient to decide
linear *integer* arithmetic. The canonical example is :math:`2 * x = 1 -> \mathtt{False}`
which is a theorem of :math:`\mathbb{Z}` but not a theorem of :math:`{\mathbb{R}}`. To remedy this
weakness, the `lia` tactic is using recursively a combination of:
+ linear *positivstellensatz* refutations;
+ cutting plane proofs;
+ case split.
Cutting plane proofs
~~~~~~~~~~~~~~~~~~~~~~
are a way to take into account the discreteness of :math:`\mathbb{Z}` by rounding up
(rational) constants up-to the closest integer.
.. _ceil_thm:
**Theorem**. Let :math:`p` be an integer and :math:`c` a rational constant. Then
:math:`p \ge c \rightarrow p \ge \lceil{c}\rceil`
For instance, from 2 x = 1 we can deduce
+ :math:`x \ge 1/2` whose cut plane is :math:`x \ge \lceil{1/2}\rceil = 1`;
+ :math:`x \le 1/2` whose cut plane is :math:`x \le \lfloor{1/2}\rfloor = 0`.
By combining these two facts (in normal form) :math:`x − 1 \ge 0` and
:math:`-x \ge 0`, we conclude by exhibiting a *positivstellensatz* refutation:
:math:`−1 \equiv x−1 + −x \in \mathit{Cone}({x−1,x})`.
Cutting plane proofs and linear *positivstellensatz* refutations are a
complete proof principle for integer linear arithmetic.
Case split
~~~~~~~~~~~
enumerates over the possible values of an expression.
.. _casesplit_thm:
**Theorem**. Let :math:`p` be an integer and :math:`c_1` and :math:`c_2`
integer constants. Then:
:math:`c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x`
Our current oracle tries to find an expression :math:`e` with a small range
:math:`[c_1,c_2]`. We generate :math:`c_2 − c_1` subgoals which contexts are enriched
with an equation :math:`e = i` for :math:`i \in [c_1,c_2]` and recursively search for
a proof.
`nra`: a proof procedure for non-linear arithmetic
--------------------------------------------------
.. tacn:: nra
:name: nra
This tactic is an *experimental* proof procedure for non-linear
arithmetic. The tactic performs a limited amount of non-linear
reasoning before running the linear prover of `lra`. This pre-processing
does the following:
+ If the context contains an arithmetic expression of the form
:math:`e[x^2]` where :math:`x` is a monomial, the context is enriched with
:math:`x^2 \ge 0`;
+ For all pairs of hypotheses :math:`e_1 \ge 0`, :math:`e_2 \ge 0`, the context is
enriched with :math:`e_1 \times e_2 \ge 0`.
After this pre-processing, the linear prover of `lra` searches for a
proof by abstracting monomials by variables.
`nia`: a proof procedure for non-linear integer arithmetic
----------------------------------------------------------
.. tacn:: nia
:name: nia
This tactic is a proof procedure for non-linear integer arithmetic.
It performs a pre-processing similar to `nra`. The obtained goal is
solved using the linear integer prover `lia`.
`psatz`: a proof procedure for non-linear arithmetic
----------------------------------------------------
.. tacn:: psatz
:name: psatz
This tactic explores the :math:`\mathit{Cone}` by increasing degrees – hence the
depth parameter :math:`n`. In theory, such a proof search is complete – if the
goal is provable the search eventually stops. Unfortunately, the
external oracle is using numeric (approximate) optimization techniques
that might miss a refutation.
To illustrate the working of the tactic, consider we wish to prove the
following Coq goal:
.. coqtop:: all
Require Import ZArith Psatz.
Open Scope Z_scope.
Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
intro x.
psatz Z 2.
As shown, such a goal is solved by ``intro x. psatz Z 2.``. The oracle returns the
cone expression :math:`2 \times (x-1) + (\mathbf{x-1}) \times (\mathbf{x−1}) + -x^2`
(polynomial hypotheses are printed in bold). By construction, this expression
belongs to :math:`\mathit{Cone}({−x^2,x -1})`. Moreover, by running `ring` we
obtain :math:`-1`. By Theorem :ref:`Psatz <psatz_thm>`, the goal is valid.
.. [#] Support for `nat` and :math:`\mathbb{N}` is obtained by pre-processing the goal with
the `zify` tactic.
.. [#] Sources and binaries can be found at https://projects.coin-or.org/Csdp
.. [#] Variants deal with equalities and strict inequalities.
.. [#] More efficient linear programming techniques could equally be employed.
.. [#] In practice, the oracle might fail to produce such a refutation.
.. comment in original TeX:
.. %% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a
.. %% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$.
.. %% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$.
|