1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
\chapter{Proof schemes}
\section{Generation of induction principles with {\tt Scheme}}
\label{Scheme}
\index{Schemes}
\comindex{Scheme}
The {\tt Scheme} command is a high-level tool for generating
automatically (possibly mutual) induction principles for given types
and sorts. Its syntax follows the schema:
\begin{quote}
{\tt Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\\
with {\ident$_m$} := Induction for {\ident'$_m$} Sort
{\sort$_m$}}
\end{quote}
where \ident'$_1$ \dots\ \ident'$_m$ are different inductive type
identifiers belonging to the same package of mutual inductive
definitions. This command generates {\ident$_1$}\dots{} {\ident$_m$}
to be mutually recursive definitions. Each term {\ident$_i$} proves a
general principle of mutual induction for objects in type {\term$_i$}.
\begin{Variants}
\item {\tt Scheme {\ident$_1$} := Minimality for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\ \\
with {\ident$_m$} := Minimality for {\ident'$_m$} Sort
{\sort$_m$}}
Same as before but defines a non-dependent elimination principle more
natural in case of inductively defined relations.
\item {\tt Scheme Equality for \ident$_1$\comindex{Scheme Equality}}
Tries to generate a Boolean equality and a proof of the
decidability of the usual equality. If \ident$_i$ involves
some other inductive types, their equality has to be defined first.
\item {\tt Scheme Induction for \ident$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\\
with Induction for {\ident$_m$} Sort
{\sort$_m$}}
If you do not provide the name of the schemes, they will be automatically
computed from the sorts involved (works also with Minimality).
\end{Variants}
\label{Scheme-examples}
\firstexample
\example{Induction scheme for \texttt{tree} and \texttt{forest}}
The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:
\begin{coq_eval}
Reset Initial.
Variables A B : Set.
\end{coq_eval}
\begin{coq_example*}
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}
You may now look at the type of {\tt tree\_forest\_rec}:
\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}
This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.
The principle {\tt forest\_tree\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.
\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}
\example{Predicates {\tt odd} and {\tt even} on naturals}
Let {\tt odd} and {\tt even} be inductively defined as:
% Reset Initial.
\begin{coq_eval}
Open Scope nat_scope.
\end{coq_eval}
\begin{coq_example*}
Inductive odd : nat -> Prop :=
oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
\end{coq_example*}
The following command generates a powerful elimination
principle:
\begin{coq_example}
Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
\end{coq_example}
The type of {\tt odd\_even} for instance will be:
\begin{coq_example}
Check odd_even.
\end{coq_example}
The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.
\subsection{Automatic declaration of schemes
\optindex{Boolean Equality Schemes}
\optindex{Elimination Schemes}
\optindex{Nonrecursive Elimination Schemes}
\optindex{Case Analysis Schemes}
\optindex{Decidable Equality Schemes}
\label{set-nonrecursive-elimination-schemes}
}
It is possible to deactivate the automatic declaration of the induction
principles when defining a new inductive type with the
{\tt Unset Elimination Schemes} command. It may be
reactivated at any time with {\tt Set Elimination Schemes}.
The types declared with the keywords {\tt Variant} (see~\ref{Variant})
and {\tt Record} (see~\ref{Record}) do not have an automatic
declaration of the induction principles. It can be activated with the
command {\tt Set Nonrecursive Elimination Schemes}. It can be
deactivated again with {\tt Unset Nonrecursive Elimination Schemes}.
In addition, the {\tt Case Analysis Schemes} flag governs the generation of
case analysis lemmas for inductive types, i.e. corresponding to the
pattern-matching term alone and without fixpoint.
\\
You can also activate the automatic declaration of those Boolean equalities
(see the second variant of {\tt Scheme})
with respectively the commands {\tt Set Boolean Equality Schemes} and
{\tt Set Decidable Equality Schemes}.
However you have to be careful with this option since
\Coq~ may now reject well-defined inductive types because it cannot compute
a Boolean equality for them.
\subsection{\tt Combined Scheme}
\label{CombinedScheme}
\comindex{Combined Scheme}
The {\tt Combined Scheme} command is a tool for combining
induction principles generated by the {\tt Scheme} command.
Its syntax follows the schema :
\begin{quote}
{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}
\end{quote}
where
\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
the same package of mutual inductive principle definitions. This command
generates {\ident$_0$} to be the conjunction of the principles: it is
built from the common premises of the principles and concluded by the
conjunction of their conclusions.
\Example
We can define the induction principles for trees and forests using:
\begin{coq_example}
Scheme tree_forest_ind := Induction for tree Sort Prop
with forest_tree_ind := Induction for forest Sort Prop.
\end{coq_example}
Then we can build the combined induction principle which gives the
conjunction of the conclusions of each individual principle:
\begin{coq_example}
Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind.
\end{coq_example}
The type of {\tt tree\_forest\_mutrec} will be:
\begin{coq_example}
Check tree_forest_mutind.
\end{coq_example}
\section{Generation of induction principles with {\tt Functional Scheme}}
\label{FunScheme}
\comindex{Functional Scheme}
The {\tt Functional Scheme} command is a high-level experimental
tool for generating automatically induction principles
corresponding to (possibly mutually recursive) functions. Its
syntax follows the schema:
\begin{quote}
{\tt Functional Scheme {\ident$_1$} := Induction for \ident'$_1$ Sort {\sort$_1$} \\
with\\
\mbox{}\hspace{0.1cm} \dots\ \\
with {\ident$_m$} := Induction for {\ident'$_m$} Sort
{\sort$_m$}}
\end{quote}
where \ident'$_1$ \dots\ \ident'$_m$ are different mutually defined function
names (they must be in the same order as when they were defined).
This command generates the induction principles
\ident$_1$\dots\ident$_m$, following the recursive structure and case
analyses of the functions \ident'$_1$ \dots\ \ident'$_m$.
\Rem
There is a difference between obtaining an induction scheme by using
\texttt{Functional Scheme} on a function defined by \texttt{Function}
or not. Indeed \texttt{Function} generally produces smaller
principles, closer to the definition written by the user.
\firstexample
\example{Induction scheme for \texttt{div2}}
\label{FunScheme-examples}
We define the function \texttt{div2} as follows:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Require Import Arith.
Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.
\end{coq_example*}
The definition of a principle of induction corresponding to the
recursive structure of \texttt{div2} is defined by the command:
\begin{coq_example}
Functional Scheme div2_ind := Induction for div2 Sort Prop.
\end{coq_example}
You may now look at the type of {\tt div2\_ind}:
\begin{coq_example}
Check div2_ind.
\end{coq_example}
We can now prove the following lemma using this principle:
\begin{coq_example*}
Lemma div2_le' : forall n:nat, div2 n <= n.
intro n.
pattern n , (div2 n).
\end{coq_example*}
\begin{coq_example}
apply div2_ind; intros.
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
simpl; auto with arith.
Qed.
\end{coq_example*}
We can use directly the \texttt{functional induction}
(\ref{FunInduction}) tactic instead of the pattern/apply trick:
\tacindex{functional induction}
\begin{coq_example*}
Reset div2_le'.
Lemma div2_le : forall n:nat, div2 n <= n.
intro n.
\end{coq_example*}
\begin{coq_example}
functional induction (div2 n).
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
auto with arith.
Qed.
\end{coq_example*}
\Rem There is a difference between obtaining an induction scheme for a
function by using \texttt{Function} (see Section~\ref{Function}) and by
using \texttt{Functional Scheme} after a normal definition using
\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for
details.
\example{Induction scheme for \texttt{tree\_size}}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
We define trees by the following mutual inductive type:
\begin{coq_example*}
Variable A : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.
\end{coq_example*}
We define the function \texttt{tree\_size} that computes the size
of a tree or a forest. Note that we use \texttt{Function} which
generally produces better principles.
\begin{coq_example*}
Function tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
\Rem \texttt{Function} generates itself non mutual induction
principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}:
\begin{coq_example}
Check tree_size_ind.
\end{coq_example}
The definition of mutual induction principles following the recursive
structure of \texttt{tree\_size} and \texttt{forest\_size} is defined
by the command:
\begin{coq_example*}
Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.
\end{coq_example*}
You may now look at the type of {\tt tree\_size\_ind2}:
\begin{coq_example}
Check tree_size_ind2.
\end{coq_example}
\section{Generation of inversion principles with \tt Derive Inversion}
\label{Derive-Inversion}
\comindex{Derive Inversion}
The syntax of {\tt Derive Inversion} follows the schema:
\begin{quote}
{\tt Derive Inversion {\ident} with forall
$(\vec{x} : \vec{T})$, $I~\vec{t}$ Sort \sort}
\end{quote}
This command generates an inversion principle for the
\texttt{inversion \dots\ using} tactic.
\tacindex{inversion \dots\ using}
Let $I$ be an inductive predicate and $\vec{x}$ the variables
occurring in $\vec{t}$. This command generates and stocks the
inversion lemma for the sort \sort~ corresponding to the instance
$\forall (\vec{x}:\vec{T}), I~\vec{t}$ with the name {\ident} in the {\bf
global} environment. When applied, it is equivalent to having inverted
the instance with the tactic {\tt inversion}.
\begin{Variants}
\item \texttt{Derive Inversion\_clear {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Inversion\_clear}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{inversion}
replaced by the tactic \texttt{inversion\_clear}.
\item \texttt{Derive Dependent Inversion {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Dependent Inversion}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{dependent inversion}.
\item \texttt{Derive Dependent Inversion\_clear {\ident} with forall
$(\vec{x}:\vec{T})$, $I~\vec{t}$ Sort \sort}\\
\comindex{Derive Dependent Inversion\_clear}
When applied, it is equivalent to having
inverted the instance with the tactic \texttt{dependent inversion\_clear}.
\end{Variants}
\Example
Let us consider the relation \texttt{Le} over natural numbers and the
following variable:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Variable P : nat -> nat -> Prop.
\end{coq_example*}
To generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop}, we do:
\begin{coq_example*}
Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
\end{coq_example*}
\begin{coq_example}
Check leminv.
\end{coq_example}
Then we can use the proven inversion lemma:
\begin{coq_eval}
Lemma ex : forall n m:nat, Le (S n) m -> P n m.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
\begin{coq_example}
inversion H using leminv.
\end{coq_example}
|