1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
|
\chapter{The \gallina{} specification language
\label{Gallina}\index{Gallina}}
\label{BNF-syntax} % Used referred to as a chapter label
This chapter describes \gallina, the specification language of {\Coq}.
It allows to develop mathematical theories and to prove specifications
of programs. The theories are built from axioms, hypotheses,
parameters, lemmas, theorems and definitions of constants, functions,
predicates and sets. The syntax of logical objects involved in
theories is described in Section~\ref{term}. The language of
commands, called {\em The Vernacular} is described in section
\ref{Vernacular}.
In {\Coq}, logical objects are typed to ensure their logical
correctness. The rules implemented by the typing algorithm are described in
Chapter \ref{Cic}.
\subsection*{About the grammars in the manual
\index{BNF metasyntax}}
Grammars are presented in Backus-Naur form (BNF). Terminal symbols are
set in {\tt typewriter font}. In addition, there are special
notations for regular expressions.
An expression enclosed in square brackets \zeroone{\ldots} means at
most one occurrence of this expression (this corresponds to an
optional component).
The notation ``\nelist{\entry}{sep}'' stands for a non empty
sequence of expressions parsed by {\entry} and
separated by the literal ``{\tt sep}''\footnote{This is similar to the
expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in
standard BNF, or ``{\entry}~{$($} {\tt sep} {\entry} {$)$*}'' in
the syntax of regular expressions.}.
Similarly, the notation ``\nelist{\entry}{}'' stands for a non
empty sequence of expressions parsed by the ``{\entry}'' entry,
without any separator between.
At the end, the notation ``\sequence{\entry}{\tt sep}'' stands for a
possibly empty sequence of expressions parsed by the ``{\entry}'' entry,
separated by the literal ``{\tt sep}''.
\section{Lexical conventions
\label{lexical}\index{Lexical conventions}}
\paragraph{Blanks}
Space, newline and horizontal tabulation are considered as blanks.
Blanks are ignored but they separate tokens.
\paragraph{Comments}
Comments in {\Coq} are enclosed between {\tt (*} and {\tt
*)}\index{Comments}, and can be nested. They can contain any
character. However, string literals must be correctly closed. Comments
are treated as blanks.
\paragraph{Identifiers and access identifiers}
Identifiers, written {\ident}, are sequences of letters, digits,
\verb!_! and \verb!'!, that do not start with a digit or \verb!'!.
That is, they are recognized by the following lexical class:
\index{ident@\ident}
\begin{center}
\begin{tabular}{rcl}
{\firstletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt \_}
$\mid$ {\tt unicode-letter}
\\
{\subsequentletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt 0..9}
$\mid$ {\tt \_} % $\mid$ {\tt \$}
$\mid$ {\tt '}
$\mid$ {\tt unicode-letter}
$\mid$ {\tt unicode-id-part} \\
{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{}
\end{tabular}
\end{center}
All characters are meaningful. In particular, identifiers are
case-sensitive. The entry {\tt unicode-letter} non-exhaustively
includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian,
Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical
letter-like symbols, hyphens, non-breaking space, {\ldots} The entry
{\tt unicode-id-part} non-exhaustively includes symbols for prime
letters and subscripts.
Access identifiers, written {\accessident}, are identifiers prefixed
by \verb!.! (dot) without blank. They are used in the syntax of qualified
identifiers.
\paragraph{Natural numbers and integers}
Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.
\index{num@{\num}}
\index{integer@{\integer}}
\begin{center}
\begin{tabular}{r@{\quad::=\quad}l}
{\digit} & {\tt 0..9} \\
{\num} & \nelistwithoutblank{\digit}{} \\
{\integer} & \zeroone{\tt -}{\num} \\
\end{tabular}
\end{center}
\paragraph[Strings]{Strings\label{strings}
\index{string@{\qstring}}}
Strings are delimited by \verb!"! (double quote), and enclose a
sequence of any characters different from \verb!"! or the sequence
\verb!""! to denote the double quote character. In grammars, the
entry for quoted strings is {\qstring}.
\paragraph{Keywords}
The following identifiers are reserved keywords, and cannot be
employed otherwise:
\begin{center}
\begin{tabular}{llllll}
\verb!_! &
\verb!as! &
\verb!at! &
\verb!cofix! &
\verb!else! &
\verb!end! \\
%
\verb!exists! &
\verb!exists2! &
\verb!fix! &
\verb!for! &
\verb!forall! &
\verb!fun! \\
%
\verb!if! &
\verb!IF! &
\verb!in! &
\verb!let! &
\verb!match! &
\verb!mod! \\
%
\verb!Prop! &
\verb!return! &
\verb!Set! &
\verb!then! &
\verb!Type! &
\verb!using! \\
%
\verb!where! &
\verb!with! &
\end{tabular}
\end{center}
\paragraph{Special tokens}
The following sequences of characters are special tokens:
\begin{center}
\begin{tabular}{lllllll}
\verb/!/ &
\verb!%! &
\verb!&! &
\verb!&&! &
\verb!(! &
\verb!()! &
\verb!)! \\
%
\verb!*! &
\verb!+! &
\verb!++! &
\verb!,! &
\verb!-! &
\verb!->! &
\verb!.! \\
%
\verb!.(! &
\verb!..! &
\verb!/! &
\verb!/\! &
\verb!:! &
\verb!::! &
\verb!:<! \\
%
\verb!:=! &
\verb!:>! &
\verb!;! &
\verb!<! &
\verb!<-! &
\verb!<->! &
\verb!<:! \\
%
\verb!<=! &
\verb!<>! &
\verb!=! &
\verb!=>! &
\verb!=_D! &
\verb!>! &
\verb!>->! \\
%
\verb!>=! &
\verb!?! &
\verb!?=! &
\verb!@! &
\verb![! &
\verb!\/! &
\verb!]! \\
%
\verb!^! &
\verb!{! &
\verb!|! &
\verb!|-! &
\verb!||! &
\verb!}! &
\verb!~! \\
\end{tabular}
\end{center}
Lexical ambiguities are resolved according to the ``longest match''
rule: when a sequence of non alphanumerical characters can be decomposed
into several different ways, then the first token is the longest
possible one (among all tokens defined at this moment), and so on.
\section{Terms \label{term}\index{Terms}}
\subsection{Syntax of terms}
Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic syntax of
the terms of the {\em Calculus of Inductive Constructions} (also
called \CIC). The formal presentation of {\CIC} is given in Chapter
\ref{Cic}. Extensions of this syntax are given in chapter
\ref{Gallina-extension}. How to customize the syntax is described in Chapter
\ref{Addoc-syntax}.
\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl@{\quad~}r} % warning: page width exceeded with \qquad
{\term} & ::= &
{\tt forall} {\binders} {\tt ,} {\term} &(\ref{products})\\
& $|$ & {\tt fun} {\binders} {\tt =>} {\term} &(\ref{abstractions})\\
& $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\
& $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\
& $|$ & {\tt let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term}
{\tt in} {\term} &(\ref{let-in})\\
& $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let cofix} {\cofixpointbody}
{\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt )} \zeroone{\ifitem}
{\tt :=} {\term}
{\tt in} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\tt let '} {\pattern} \zeroone{{\tt in} {\term}} {\tt :=} {\term}
\zeroone{\returntype} {\tt in} {\term} & (\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\tt if} {\term} \zeroone{\ifitem} {\tt then} {\term}
{\tt else} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\
& $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\
& $|$ & {\term} {\tt <:} {\term} &(\ref{typecast})\\
& $|$ & {\term} {\tt :>} &(\ref{ProgramSyntax})\\
& $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\
& $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\
& $|$ & {\tt @} {\qualid} \sequence{\term}{}
&(\ref{Implicits-explicitation})\\
& $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\
& $|$ & {\tt match} \nelist{\caseitem}{\tt ,}
\zeroone{\returntype} {\tt with} &\\
&& ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end}
&(\ref{caseanalysis})\\
& $|$ & {\qualid} &(\ref{qualid})\\
& $|$ & {\sort} &(\ref{Gallina-sorts})\\
& $|$ & {\num} &(\ref{numerals})\\
& $|$ & {\_} &(\ref{hole})\\
& $|$ & {\tt (} {\term} {\tt )} & \\
& & &\\
{\termarg} & ::= & {\term} &\\
& $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )}
&(\ref{Implicits-explicitation})\\
%% & $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )}
%% &(\ref{Implicits-explicitation})\\
&&&\\
{\binders} & ::= & \nelist{\binder}{} \\
&&&\\
{\binder} & ::= & {\name} & (\ref{Binders}) \\
& $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\
& $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\
& & &\\
{\name} & ::= & {\ident} &\\
& $|$ & {\tt \_} &\\
&&&\\
{\qualid} & ::= & {\ident} & \\
& $|$ & {\qualid} {\accessident} &\\
& & &\\
{\sort} & ::= & {\tt Prop} ~$|$~ {\tt Set} ~$|$~ {\tt Type} &
\end{tabular}
\end{centerframe}
\caption{Syntax of terms}
\label{term-syntax}
\index{term@{\term}}
\index{sort@{\sort}}
\end{figure}
\begin{figure}[htb]
\begin{centerframe}
\begin{tabular}{lcl}
{\fixpointbodies} & ::= &
{\fixpointbody} \\
& $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}}
{\tt for} {\ident} \\
{\cofixpointbodies} & ::= &
{\cofixpointbody} \\
& $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}}
{\tt for} {\ident} \\
&&\\
{\fixpointbody} & ::= &
{\ident} {\binders} \zeroone{\annotation} {\typecstr}
{\tt :=} {\term} \\
{\cofixpointbody} & ::= & {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} \\
& &\\
{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\
&&\\
{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name}
\zeroone{{\tt in} \pattern} \\
&&\\
{\ifitem} & ::= & \zeroone{{\tt as} {\name}} {\returntype} \\
&&\\
{\returntype} & ::= & {\tt return} {\term} \\
&&\\
{\eqn} & ::= & \nelist{\multpattern}{\tt |} {\tt =>} {\term}\\
&&\\
{\multpattern} & ::= & \nelist{\pattern}{\tt ,}\\
&&\\
{\pattern} & ::= & {\qualid} \nelist{\pattern}{} \\
& $|$ & {\tt @} {\qualid} \sequence{\pattern}{} \\
& $|$ & {\pattern} {\tt as} {\ident} \\
& $|$ & {\pattern} {\tt \%} {\ident} \\
& $|$ & {\qualid} \\
& $|$ & {\tt \_} \\
& $|$ & {\num} \\
& $|$ & {\tt (} \nelist{\orpattern}{,} {\tt )} \\
\\
{\orpattern} & ::= & \nelist{\pattern}{\tt |}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of terms (continued)}
\label{term-syntax-aux}
\end{figure}
%%%%%%%
\subsection{Types}
{\Coq} terms are typed. {\Coq} types are recognized by the same
syntactic class as {\term}. We denote by {\type} the semantic subclass
of types inside the syntactic class {\term}.
\index{type@{\type}}
\subsection{Qualified identifiers and simple identifiers
\label{qualid}
\label{ident}}
{\em Qualified identifiers} ({\qualid}) denote {\em global constants}
(definitions, lemmas, theorems, remarks or facts), {\em global
variables} (parameters or axioms), {\em inductive
types} or {\em constructors of inductive types}.
{\em Simple identifiers} (or shortly {\ident}) are a
syntactic subset of qualified identifiers. Identifiers may also
denote local {\em variables}, what qualified identifiers do not.
\subsection{Numerals
\label{numerals}}
Numerals have no definite semantics in the calculus. They are mere
notations that can be bound to objects through the notation mechanism
(see Chapter~\ref{Addoc-syntax} for details). Initially, numerals are
bound to Peano's representation of natural numbers
(see~\ref{libnats}).
Note: negative integers are not at the same level as {\num}, for this
would make precedence unnatural.
\subsection{Sorts
\index{Sorts}
\index{Type@{\Type}}
\index{Set@{\Set}}
\index{Prop@{\Prop}}
\index{Sorts}
\label{Gallina-sorts}}
There are three sorts \Set, \Prop\ and \Type.
\begin{itemize}
\item \Prop\ is the universe of {\em logical propositions}.
The logical propositions themselves are typing the proofs.
We denote propositions by {\form}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{form@{\form}}
\item \Set\ is is the universe of {\em program
types} or {\em specifications}.
The specifications themselves are typing the programs.
We denote specifications by {\specif}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{specif@{\specif}}
\item {\Type} is the type of {\Set} and {\Prop}
\end{itemize}
\noindent More on sorts can be found in Section~\ref{Sorts}.
\subsection{Binders
\label{Binders}
\index{binders}}
Various constructions such as {\tt fun}, {\tt forall}, {\tt fix} and
{\tt cofix} {\em bind} variables. A binding is represented by an
identifier. If the binding variable is not used in the expression, the
identifier can be replaced by the symbol {\tt \_}. When the type of a
bound variable cannot be synthesized by the system, it can be
specified with the notation {\tt (}\,{\ident}\,{\tt :}\,{\type}\,{\tt
)}. There is also a notation for a sequence of binding variables
sharing the same type: {\tt (}\,{\ident$_1$}\ldots{\ident$_n$}\,{\tt
:}\,{\type}\,{\tt )}.
Some constructions allow the binding of a variable to value. This is
called a ``let-binder''. The entry {\binder} of the grammar accepts
either an assumption binder as defined above or a let-binder.
The notation in the
latter case is {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )}. In a
let-binder, only one variable can be introduced at the same
time. It is also possible to give the type of the variable as follows:
{\tt (}\,{\ident}\,{\tt :}\,{\term}\,{\tt :=}\,{\term}\,{\tt )}.
Lists of {\binder} are allowed. In the case of {\tt fun} and {\tt
forall}, it is intended that at least one binder of the list is an
assumption otherwise {\tt fun} and {\tt forall} gets identical. Moreover,
parentheses can be omitted in the case of a single sequence of
bindings sharing the same type (e.g.: {\tt fun~(x~y~z~:~A)~=>~t} can
be shortened in {\tt fun~x~y~z~:~A~=>~t}).
\subsection{Abstractions
\label{abstractions}
\index{abstractions}}
The expression ``{\tt fun} {\ident} {\tt :} {\type} {\tt =>}~{\term}''
defines the {\em abstraction} of the variable {\ident}, of type
{\type}, over the term {\term}. It denotes a function of the variable
{\ident} that evaluates to the expression {\term} (e.g. {\tt fun x:$A$
=> x} denotes the identity function on type $A$).
% The variable {\ident} is called the {\em parameter} of the function
% (we sometimes say the {\em formal parameter}).
The keyword {\tt fun} can be followed by several binders as given in
Section~\ref{Binders}. Functions over several variables are
equivalent to an iteration of one-variable functions. For instance the
expression ``{\tt fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt
:}~\type~{\tt =>}~{\term}'' denotes the same function as ``{\tt
fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt =>}~{\ldots}~{\tt
fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}''. If a let-binder
occurs in the list of binders, it is expanded to a local definition
(see Section~\ref{let-in}).
\subsection{Products
\label{products}
\index{products}}
The expression ``{\tt forall}~{\ident}~{\tt :}~{\type}{\tt
,}~{\term}'' denotes the {\em product} of the variable {\ident} of
type {\type}, over the term {\term}. As for abstractions, {\tt forall}
is followed by a binder list, and products over several variables are
equivalent to an iteration of one-variable products.
Note that {\term} is intended to be a type.
If the variable {\ident} occurs in {\term}, the product is called {\em
dependent product}. The intention behind a dependent product {\tt
forall}~$x$~{\tt :}~{$A$}{\tt ,}~{$B$} is twofold. It denotes either
the universal quantification of the variable $x$ of type $A$ in the
proposition $B$ or the functional dependent product from $A$ to $B$ (a
construction usually written $\Pi_{x:A}.B$ in set theory).
Non dependent product types have a special notation: ``$A$ {\tt ->}
$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. The non dependent
product is used both to denote the propositional implication and
function types.
\subsection{Applications
\label{applications}
\index{applications}}
The expression \term$_0$ \term$_1$ denotes the application of
\term$_0$ to \term$_1$.
The expression {\tt }\term$_0$ \term$_1$ ... \term$_n${\tt}
denotes the application of the term \term$_0$ to the arguments
\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots}
{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\tt )} {\term$_n$} {\tt }:
associativity is to the left.
The notation {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )} for
arguments is used for making explicit the value of implicit arguments
(see Section~\ref{Implicits-explicitation}).
\subsection{Type cast
\label{typecast}
\index{Cast}}
The expression ``{\term}~{\tt :}~{\type}'' is a type cast
expression. It enforces the type of {\term} to be {\type}.
``{\term}~{\tt <:}~{\type}'' locally sets up the virtual machine (as if option
{\tt Virtual Machine} were on, see \ref{SetVirtualMachine}) for checking that
{\term} has type {\type}.
\subsection{Inferable subterms
\label{hole}
\index{\_}}
Expressions often contain redundant pieces of information. Subterms that
can be automatically inferred by {\Coq} can be replaced by the
symbol ``\_'' and {\Coq} will guess the missing piece of information.
\subsection{Local definitions (let-in)
\label{let-in}
\index{Local definitions}
\index{let-in}}
{\tt let}~{\ident}~{\tt :=}~{\term$_1$}~{\tt in}~{\term$_2$} denotes
the local binding of \term$_1$ to the variable $\ident$ in
\term$_2$.
There is a syntactic sugar for local definition of functions: {\tt
let} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} {\tt :=} {\term$_1$}
{\tt in} {\term$_2$} stands for {\tt let} {\ident} {\tt := fun}
{\binder$_1$} {\ldots} {\binder$_n$} {\tt =>} {\term$_2$} {\tt in}
{\term$_2$}.
\subsection{Definition by case analysis
\label{caseanalysis}
\index{match@{\tt match\ldots with\ldots end}}}
Objects of inductive types can be destructurated by a case-analysis
construction called {\em pattern-matching} expression. A
pattern-matching expression is used to analyze the structure of an
inductive objects and to apply specific treatments accordingly.
This paragraph describes the basic form of pattern-matching. See
Section~\ref{Mult-match} and Chapter~\ref{Mult-match-full} for the
description of the general form. The basic form of pattern-matching is
characterized by a single {\caseitem} expression, a {\multpattern}
restricted to a single {\pattern} and {\pattern} restricted to the
form {\qualid} \nelist{\ident}{}.
The expression {\tt match} {\term$_0$} {\returntype} {\tt with}
{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$}
{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a {\em
pattern-matching} over the term {\term$_0$} (expected to be of an
inductive type $I$). The terms {\term$_1$}\ldots{\term$_n$} are the
{\em branches} of the pattern-matching expression. Each of
{\pattern$_i$} has a form \qualid~\nelist{\ident}{} where {\qualid}
must denote a constructor. There should be exactly one branch for
every constructor of $I$.
The {\returntype} expresses the type returned by the whole {\tt match}
expression. There are several cases. In the {\em non dependent} case,
all branches have the same type, and the {\returntype} is the common
type of branches. In this case, {\returntype} can usually be omitted
as it can be inferred from the type of the branches\footnote{Except if
the inductive type is empty in which case there is no equation that can be
used to infer the return type.}.
In the {\em dependent} case, there are three subcases. In the first
subcase, the type in each branch may depend on the exact value being
matched in the branch. In this case, the whole pattern-matching itself
depends on the term being matched. This dependency of the term being
matched in the return type is expressed with an ``{\tt as {\ident}}''
clause where {\ident} is dependent in the return type.
For instance, in the following example:
\begin{coq_example*}
Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eq_refl bool false)
end.
\end{coq_example*}
the branches have respective types {\tt or (eq bool true true) (eq
bool true false)} and {\tt or (eq bool false true) (eq bool false
false)} while the whole pattern-matching expression has type {\tt or
(eq bool b true) (eq bool b false)}, the identifier {\tt x} being used
to represent the dependency. Remark that when the term being matched
is a variable, the {\tt as} clause can be omitted and the term being
matched can serve itself as binding name in the return type. For
instance, the following alternative definition is accepted and has the
same meaning as the previous one.
\begin{coq_example*}
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false)
:= match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false)
(eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false)
(eq_refl bool false)
end.
\end{coq_example*}
The second subcase is only relevant for annotated inductive types such
as the equality predicate (see Section~\ref{Equality}), the order
predicate on natural numbers % (see Section~\ref{le}) % undefined reference
or the type of
lists of a given length (see Section~\ref{listn}). In this configuration,
the type of each branch can depend on the type dependencies specific
to the branch and the whole pattern-matching expression has a type
determined by the specific dependencies in the type of the term being
matched. This dependency of the return type in the annotations of the
inductive type is expressed using a {\tt
``in~I~\_~$\ldots$~\_~\ident$_1$~$\ldots$~\ident$_n$}'' clause, where
\begin{itemize}
\item $I$ is the inductive type of the term being matched;
\item the names \ident$_i$'s correspond to the arguments of the
inductive type that carry the annotations: the return type is dependent
on them;
\item the {\_}'s denote the family parameters of the inductive type:
the return type is not dependent on them.
\end{itemize}
For instance, in the following example:
\begin{coq_example*}
Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
| eq_refl => eq_refl A x
end.
\end{coq_example*}
the type of the branch has type {\tt eq~A~x~x} because the third
argument of {\tt eq} is {\tt x} in the type of the pattern {\tt
refl\_equal}. On the contrary, the type of the whole pattern-matching
expression has type {\tt eq~A~y~x} because the third argument of {\tt
eq} is {\tt y} in the type of {\tt H}. This dependency of the case
analysis in the third argument of {\tt eq} is expressed by the
identifier {\tt z} in the return type.
Finally, the third subcase is a combination of the first and second
subcase. In particular, it only applies to pattern-matching on terms
in a type with annotations. For this third subcase, both
the clauses {\tt as} and {\tt in} are available.
There are specific notations for case analysis on types with one or
two constructors: ``{\tt if {\ldots} then {\ldots} else {\ldots}}''
and ``{\tt let (}\nelist{\ldots}{,}{\tt ) := } {\ldots} {\tt in}
{\ldots}'' (see Sections~\ref{if-then-else} and~\ref{Letin}).
%\SeeAlso Section~\ref{Mult-match} for convenient extensions of pattern-matching.
\subsection{Recursive functions
\label{fixpoints}
\index{fix@{fix \ident$_i$\{\dots\}}}}
The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$}
\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$
\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for}
{\ident$_i$}'' denotes the $i$\nth component of a block of functions
defined by mutual well-founded recursion. It is the local counterpart
of the {\tt Fixpoint} command. See Section~\ref{Fixpoint} for more
details. When $n=1$, the ``{\tt for}~{\ident$_i$}'' clause is omitted.
The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :}
{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$ {\tt
:} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$\nth component of
a block of terms defined by a mutual guarded co-recursion. It is the
local counterpart of the {\tt CoFixpoint} command. See
Section~\ref{CoFixpoint} for more details. When $n=1$, the ``{\tt
for}~{\ident$_i$}'' clause is omitted.
The association of a single fixpoint and a local
definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt
:=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt :=
fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same
applies for co-fixpoints.
\section{The Vernacular
\label{Vernacular}}
\begin{figure}[tbp]
\begin{centerframe}
\begin{tabular}{lcl}
{\sentence} & ::= & {\assumption} \\
& $|$ & {\definition} \\
& $|$ & {\inductive} \\
& $|$ & {\fixpoint} \\
& $|$ & {\assertion} {\proof} \\
&&\\
%% Assumptions
{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
&&\\
{\assumptionkeyword} & $\!\!$ ::= & {\tt Axiom} $|$ {\tt Conjecture} \\
& $|$ & {\tt Parameter} $|$ {\tt Parameters} \\
& $|$ & {\tt Variable} $|$ {\tt Variables} \\
& $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\
&&\\
{\assums} & ::= & \nelist{\ident}{} {\tt :} {\term} \\
& $|$ & \nelist{{\tt (} \nelist{\ident}{} {\tt :} {\term} {\tt )}}{} \\
&&\\
%% Definitions
{\definition} & ::= &
{\tt Definition} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
& $|$ & {\tt Let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\
&&\\
%% Inductives
{\inductive} & ::= &
{\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
& $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
& & \\
{\inductivebody} & ::= &
{\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
&& ~~\zeroone{\zeroone{\tt |} \nelist{$\!${\ident}$\!$ \zeroone{\binders} {\typecstrwithoutblank}}{|}} \\
& & \\ %% TODO: where ...
%% Fixpoints
{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with} {\tt .} \\
& $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with} {\tt .} \\
&&\\
%% Lemmas & proofs
{\assertion} & ::= &
{\statkwd} {\ident} \zeroone{\binders} {\tt :} {\term} {\tt .} \\
&&\\
{\statkwd} & ::= & {\tt Theorem} $|$ {\tt Lemma} \\
& $|$ & {\tt Remark} $|$ {\tt Fact}\\
& $|$ & {\tt Corollary} $|$ {\tt Proposition} \\
& $|$ & {\tt Definition} $|$ {\tt Example} \\\\
&&\\
{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\
& $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\
& $|$ & {\tt Proof} {\tt .} {\dots} {\tt Admitted} {\tt .}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of sentences}
\label{sentences-syntax}
\end{figure}
Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the
language of commands of \gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter
and ends with a dot.
The different kinds of command are described hereafter. They all suppose
that the terms occurring in the sentences are well-typed.
%%
%% Axioms and Parameters
%%
\subsection{Assumptions
\index{Declarations}
\label{Declarations}}
Assumptions extend the environment\index{Environment} with axioms,
parameters, hypotheses or variables. An assumption binds an {\ident}
to a {\type}. It is accepted by {\Coq} if and only if this {\type} is
a correct type in the environment preexisting the declaration and if
{\ident} was not previously defined in the same module. This {\type}
is considered to be the type (or specification, or statement) assumed
by {\ident} and we say that {\ident} has type {\type}.
\subsubsection{{\tt Axiom {\ident} :{\term} .}
\comindex{Axiom}
\label{Axiom}}
This command links {\term} to the name {\ident} as its specification
in the global context. The fact asserted by {\term} is thus assumed as
a postulate.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item \comindex{Parameter}\comindex{Parameters}
{\tt Parameter {\ident} :{\term}.} \\
Is equivalent to {\tt Axiom {\ident} : {\term}}
\item {\tt Parameter {\ident$_1$} {\ldots} {\ident$_n$} {\tt :}{\term}.}\\
Adds $n$ parameters with specification {\term}
\item
{\tt Parameter\,%
(\,{\ident$_{1,1}$} {\ldots} {\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\;%
\ldots\;{\tt (}\,{\ident$_{n,1}$}{\ldots}{\ident$_{n,k_n}$}\,{\tt :}\,%
{\term$_n$} {\tt )}.}\\
Adds $n$ blocks of parameters with different specifications.
\item \comindex{Conjecture}
{\tt Conjecture {\ident} :{\term}.}\\
Is equivalent to {\tt Axiom {\ident} : {\term}}.
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by
{\tt Parameters}.
\subsubsection{{\tt Variable {\ident} :{\term}}.
\comindex{Variable}
\comindex{Variables}
\label{Variable}}
This command links {\term} to the name {\ident} in the context of the
current section (see Section~\ref{Section} for a description of the section
mechanism). When the current section is closed, name {\ident} will be
unknown and every object using this variable will be explicitly
parametrized (the variable is {\em discharged}). Using the {\tt
Variable} command out of any section is equivalent to using {\tt Parameter}.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Variable {\ident$_1$} {\ldots} {\ident$_n$} {\tt :}{\term}.}\\
Links {\term} to names {\ident$_1$} {\ldots} {\ident$_n$}.
\item
{\tt Variable\,%
(\,{\ident$_{1,1}$} {\ldots} {\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\;%
\ldots\;{\tt (}\,{\ident$_{n,1}$} {\ldots}{\ident$_{n,k_n}$}\,{\tt :}\,%
{\term$_n$} {\tt )}.}\\
Adds $n$ blocks of variables with different specifications.
\item \comindex{Hypothesis}
\comindex{Hypotheses}
{\tt Hypothesis {\ident} {\tt :}{\term}.} \\
\texttt{Hypothesis} is a synonymous of \texttt{Variable}
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Variable} by
{\tt Variables} and {\tt Hypothesis} by {\tt Hypotheses}.
It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis:
for logical postulates (i.e. when the assertion {\term} is of sort
\verb:Prop:), and to use the keywords \verb:Parameter: and
\verb:Variable: in other cases (corresponding to the declaration of an
abstract mathematical entity).
%%
%% Definitions
%%
\subsection{Definitions
\index{Definitions}
\label{Basic-definitions}}
Definitions extend the environment\index{Environment} with
associations of names to terms. A definition can be seen as a way to
give a meaning to a name or as a way to abbreviate a term. In any
case, the name can later be replaced at any time by its definition.
The operation of unfolding a name into its definition is called
$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see
Section~\ref{delta}). A definition is accepted by the system if and
only if the defined term is well-typed in the current context of the
definition and if the name is not already used. The name defined by
the definition is called a {\em constant}\index{Constant} and the term
it refers to is its {\em body}. A definition has a type which is the
type of its body.
A formal presentation of constants and environments is given in
Section~\ref{Typed-terms}.
\subsubsection{\tt Definition {\ident} := {\term}.
\comindex{Definition}}
This command binds {\term} to the name {\ident} in the
environment, provided that {\term} is well-typed.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Definition} {\ident} {\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\
It checks that the type of {\term$_2$} is definitionally equal to
{\term$_1$}, and registers {\ident} as being of type {\term$_1$},
and bound to value {\term$_2$}.
\item {\tt Definition} {\ident} {\binder$_1$} {\ldots} {\binder$_n$}
{\tt :} \term$_1$ {\tt :=} {\term$_2$}{\tt .}\\
This is equivalent to \\
{\tt Definition} {\ident} {\tt : forall}%
{\binder$_1$} {\ldots} {\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}\,%
{\tt fun}\,{\binder$_1$} {\ldots} {\binder$_n$}\,{\tt =>}\,{\term$_2$}\,%
{\tt .}
\item {\tt Example {\ident} := {\term}.}\\
{\tt Example} {\ident} {\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\
{\tt Example} {\ident} {\binder$_1$} {\ldots} {\binder$_n$}
{\tt :} {\term$_1$} {\tt :=} {\term$_2$}{\tt .}\\
\comindex{Example}
These are synonyms of the {\tt Definition} forms.
\end{Variants}
\begin{ErrMsgs}
\item \errindex{Error: The term {\term} has type {\type} while it is expected to have type {\type}}
\end{ErrMsgs}
\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}.
\subsubsection{\tt Let {\ident} := {\term}.
\comindex{Let}}
This command binds the value {\term} to the name {\ident} in the
environment of the current section. The name {\ident} disappears
when the current section is eventually closed, and, all
persistent objects (such as theorems) defined within the
section and depending on {\ident} are prefixed by the local definition
{\tt let {\ident} := {\term} in}.
\begin{ErrMsgs}
\item \errindex{{\ident} already exists}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Let {\ident} : {\term$_1$} := {\term$_2$}.}
\end{Variants}
\SeeAlso Sections \ref{Section} (section mechanism), \ref{Opaque},
\ref{Transparent} (opaque/transparent constants), \ref{unfold} (tactic
{\tt unfold}).
%%
%% Inductive Types
%%
\subsection{Inductive definitions
\index{Inductive definitions}
\label{gal_Inductive_Definitions}
\comindex{Inductive}
\label{Inductive}}
We gradually explain simple inductive types, simple
annotated inductive types, simple parametric inductive types,
mutually inductive types. We explain also co-inductive types.
\subsubsection{Simple inductive types}
The definition of a simple inductive type has the following form:
\medskip
\begin{tabular}{l}
{\tt Inductive} {\ident} {\tt :} {\sort} {\tt :=} \\
\begin{tabular}{clcl}
& {\ident$_1$} & {\tt :} & {\type$_1$} \\
{\tt |} & {\ldots} && \\
{\tt |} & {\ident$_n$} & {\tt :} & {\type$_n$} \\
\end{tabular}
\end{tabular}
\medskip
The name {\ident} is the name of the inductively defined type and
{\sort} is the universes where it lives.
The names {\ident$_1$}, {\ldots}, {\ident$_n$}
are the names of its constructors and {\type$_1$}, {\ldots},
{\type$_n$} their respective types. The types of the constructors have
to satisfy a {\em positivity condition} (see Section~\ref{Positivity})
for {\ident}. This condition ensures the soundness of the inductive
definition. If this is the case, the constants {\ident},
{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with
their respective types. Accordingly to the universe where
the inductive type lives ({\it e.g.} its type {\sort}), {\Coq} provides a
number of destructors for {\ident}. Destructors are named
{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which
respectively correspond to elimination principles on {\tt Prop}, {\tt
Set} and {\tt Type}. The type of the destructors expresses structural
induction/recursion principles over objects of {\ident}. We give below
two examples of the use of the {\tt Inductive} definitions.
The set of natural numbers is defined as:
\begin{coq_example}
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
\end{coq_example}
The type {\tt nat} is defined as the least \verb:Set: containing {\tt
O} and closed by the {\tt S} constructor. The constants {\tt nat},
{\tt O} and {\tt S} are added to the environment.
Now let us have a look at the elimination principles. They are three
of them:
{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt
nat\_ind} is:
\begin{coq_example}
Check nat_ind.
\end{coq_example}
This is the well known structural induction principle over natural
numbers, i.e. the second-order form of Peano's induction principle.
It allows to prove some universal property of natural numbers ({\tt
forall n:nat, P n}) by induction on {\tt n}.
The types of {\tt nat\_rec} and {\tt nat\_rect} are similar, except
that they pertain to {\tt (P:nat->Set)} and {\tt (P:nat->Type)}
respectively . They correspond to primitive induction principles
(allowing dependent types) respectively over sorts \verb:Set: and
\verb:Type:. The constant {\ident}{\tt \_ind} is always provided,
whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be impossible
to derive (for example, when {\ident} is a proposition).
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Variants}
\item
\begin{coq_example*}
Inductive nat : Set := O | S (_:nat).
\end{coq_example*}
In the case where inductive types have no annotations (next section
gives an example of such annotations),
%the positivity condition implies that
a constructor can be defined by only giving the type of
its arguments.
\end{Variants}
\subsubsection{Simple annotated inductive types}
In an annotated inductive types, the universe where the inductive
type is defined is no longer a simple sort, but what is called an
arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us define the
$even$ predicate:
\begin{coq_example}
Inductive even : nat -> Prop :=
| even_0 : even O
| even_SS : forall n:nat, even n -> even (S (S n)).
\end{coq_example}
The type {\tt nat->Prop} means that {\tt even} is a unary predicate
(inductively defined) over natural numbers. The type of its two
constructors are the defining clauses of the predicate {\tt even}. The
type of {\tt even\_ind} is:
\begin{coq_example}
Check even_ind.
\end{coq_example}
From a mathematical point of view it asserts that the natural numbers
satisfying the predicate {\tt even} are exactly in the smallest set of
naturals satisfying the clauses {\tt even\_0} or {\tt even\_SS}. This
is why, when we want to prove any predicate {\tt P} over elements of
{\tt even}, it is enough to prove it for {\tt O} and to prove that if
any natural number {\tt n} satisfies {\tt P} its double successor {\tt
(S (S n))} satisfies also {\tt P}. This is indeed analogous to the
structural induction principle we got for {\tt nat}.
\begin{ErrMsgs}
\item \errindex{Non strictly positive occurrence of {\ident} in {\type}}
\item \errindex{The conclusion of {\type} is not valid; it must be
built from {\ident}}
\end{ErrMsgs}
\subsubsection{Parametrized inductive types}
In the previous example, each constructor introduces a
different instance of the predicate {\tt even}. In some cases,
all the constructors introduces the same generic instance of the
inductive definition, in which case, instead of an annotation, we use
a context of parameters which are binders shared by all the
constructors of the definition.
% Inductive types may be parameterized. Parameters differ from inductive
% type annotations in the fact that recursive invokations of inductive
% types must always be done with the same values of parameters as its
% specification.
The general scheme is:
\begin{center}
{\tt Inductive} {\ident} {\binder$_1$}\ldots{\binder$_k$} : {\term} :=
{\ident$_1$}: {\term$_1$} | {\ldots} | {\ident$_n$}: \term$_n$
{\tt .}
\end{center}
Parameters differ from inductive type annotations in the fact that the
conclusion of each type of constructor {\term$_i$} invoke the inductive
type with the same values of parameters as its specification.
A typical example is the definition of polymorphic lists:
\begin{coq_example*}
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
Note that in the type of {\tt nil} and {\tt cons}, we write {\tt
(list A)} and not just {\tt list}.\\ The constants {\tt nil} and
{\tt cons} will have respectively types:
\begin{coq_example}
Check nil.
Check cons.
\end{coq_example}
Types of destructors are also quantified with {\tt (A:Set)}.
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Variants}
\item
\begin{coq_example*}
Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).
\end{coq_example*}
This is an alternative definition of lists where we specify the
arguments of the constructors rather than their full type.
\end{Variants}
\begin{ErrMsgs}
\item \errindex{The {\num}th argument of {\ident} must be {\ident'} in
{\type}}
\end{ErrMsgs}
\paragraph{New from \Coq{} V8.1} The condition on parameters for
inductive definitions has been relaxed since \Coq{} V8.1. It is now
possible in the type of a constructor, to invoke recursively the
inductive definition on an argument which is not the parameter itself.
One can define~:
\begin{coq_example}
Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A -> list2 (A*A) -> list2 A.
\end{coq_example}
\begin{coq_eval}
Reset list2.
\end{coq_eval}
that can also be written by specifying only the type of the arguments:
\begin{coq_example*}
Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
\end{coq_example*}
But the following definition will give an error:
\begin{coq_example}
Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A -> listw (A*A) -> listw (A*A).
\end{coq_example}
Because the conclusion of the type of constructors should be {\tt
listw A} in both cases.
A parametrized inductive definition can be defined using
annotations instead of parameters but it will sometimes give a
different (bigger) sort for the inductive definition and will produce
a less convenient rule for case elimination.
\SeeAlso Sections~\ref{Cic-inductive-definitions} and~\ref{Tac-induction}.
\subsubsection{Mutually defined inductive types
\comindex{Inductive}
\label{Mutual-Inductive}}
The definition of a block of mutually inductive types has the form:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident$_1$} : {\type$_1$} := \\
\begin{tabular}{clcl}
& {\ident$_1^1$} &:& {\type$_1^1$} \\
| & {\ldots} && \\
| & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
\end{tabular} \\
with\\
~{\ldots} \\
with {\ident$_m$} : {\type$_m$} := \\
\begin{tabular}{clcl}
& {\ident$_1^m$} &:& {\type$_1^m$} \\
| & {\ldots} \\
| & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
\end{tabular}
\end{tabular}
}
\medskip
\noindent It has the same semantics as the above {\tt Inductive}
definition for each \ident$_1$, {\ldots}, \ident$_m$. All names
\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots,
\ident$_{n_m}^m$ are simultaneously added to the environment. Then
well-typing of constructors can be checked. Each one of the
\ident$_1$, {\ldots}, \ident$_m$ can be used on its own.
It is also possible to parametrize these inductive definitions.
However, parameters correspond to a local
context in which the whole set of inductive declarations is done. For
this reason, the parameters must be strictly the same for each
inductive types The extended syntax is:
\medskip
\begin{tabular}{l}
{\tt Inductive} {\ident$_1$} {\params} {\tt :} {\type$_1$} {\tt :=} \\
\begin{tabular}{clcl}
& {\ident$_1^1$} &{\tt :}& {\type$_1^1$} \\
{\tt |} & {\ldots} && \\
{\tt |} & {\ident$_{n_1}^1$} &{\tt :}& {\type$_{n_1}^1$}
\end{tabular} \\
{\tt with}\\
~{\ldots} \\
{\tt with} {\ident$_m$} {\params} {\tt :} {\type$_m$} {\tt :=} \\
\begin{tabular}{clcl}
& {\ident$_1^m$} &{\tt :}& {\type$_1^m$} \\
{\tt |} & {\ldots} \\
{\tt |} & {\ident$_{n_m}^m$} &{\tt :}& {\type$_{n_m}^m$}.
\end{tabular}
\end{tabular}
\medskip
\Example
The typical example of a mutual inductive data type is the one for
trees and forests. We assume given two types $A$ and $B$ as variables.
It can be declared the following way.
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_example*}
This declaration generates automatically six induction
principles. They are respectively
called {\tt tree\_rec}, {\tt tree\_ind}, {\tt
tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt
forest\_rect}. These ones are not the most general ones but are
just the induction principles corresponding to each inductive part
seen as a single inductive definition.
To illustrate this point on our example, we give the types of {\tt
tree\_rec} and {\tt forest\_rec}.
\begin{coq_example}
Check tree_rec.
Check forest_rec.
\end{coq_example}
Assume we want to parametrize our mutual inductive definitions with
the two type variables $A$ and $B$, the declaration should be done the
following way:
\begin{coq_eval}
Reset tree.
\end{coq_eval}
\begin{coq_example*}
Inductive tree (A B:Set) : Set :=
node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=
| leaf : B -> forest A B
| cons : tree A B -> forest A B -> forest A B.
\end{coq_example*}
Assume we define an inductive definition inside a section. When the
section is closed, the variables declared in the section and occurring
free in the declaration are added as parameters to the inductive
definition.
\SeeAlso Section~\ref{Section}.
\subsubsection{Co-inductive types
\label{CoInductiveTypes}
\comindex{CoInductive}}
The objects of an inductive type are well-founded with respect to the
constructors of the type. In other words, such objects contain only a
{\it finite} number of constructors. Co-inductive types arise from
relaxing this condition, and admitting types whose objects contain an
infinity of constructors. Infinite objects are introduced by a
non-ending (but effective) process of construction, defined in terms
of the constructors of the type.
An example of a co-inductive type is the type of infinite sequences of
natural numbers, usually called streams. It can be introduced in \Coq\
using the \texttt{CoInductive} command:
\begin{coq_example}
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
\end{coq_example}
The syntax of this command is the same as the command \texttt{Inductive}
(see Section~\ref{gal_Inductive_Definitions}). Notice that no
principle of induction is derived from the definition of a
co-inductive type, since such principles only make sense for inductive
ones. For co-inductive ones, the only elimination principle is case
analysis. For example, the usual destructors on streams
\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as
follows:
\begin{coq_example}
Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl (x:Stream) := let (a,s) := x in s.
\end{coq_example}
Definition of co-inductive predicates and blocks of mutually
co-inductive definitions are also allowed. An example of a
co-inductive predicate is the extensional equality on streams:
\begin{coq_example}
CoInductive EqSt : Stream -> Stream -> Prop :=
eqst :
forall s1 s2:Stream,
hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
\end{coq_example}
In order to prove the extensionally equality of two streams $s_1$ and
$s_2$ we have to construct an infinite proof of equality, that is,
an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see
how to introduce infinite objects in Section~\ref{CoFixpoint}.
%%
%% (Co-)Fixpoints
%%
\subsection{Definition of recursive functions}
\subsubsection{Definition of functions by recursion over inductive objects}
This section describes the primitive form of definition by recursion
over inductive objects. See Section~\ref{Function} for more advanced
constructions. The command:
\begin{center}
\texttt{Fixpoint {\ident} {\params} {\tt \{struct}
\ident$_0$ {\tt \}} : type$_0$ := \term$_0$
\comindex{Fixpoint}\label{Fixpoint}}
\end{center}
allows to define functions by pattern-matching over inductive objects
using a fixed point construction.
The meaning of this declaration is to define {\it ident} a recursive
function with arguments specified by the binders in {\params} such
that {\it ident} applied to arguments corresponding to these binders
has type \type$_0$, and is equivalent to the expression \term$_0$. The
type of the {\ident} is consequently {\tt forall {\params} {\tt,}
\type$_0$} and the value is equivalent to {\tt fun {\params} {\tt
=>} \term$_0$}.
To be accepted, a {\tt Fixpoint} definition has to satisfy some
syntactical constraints on a special argument called the decreasing
argument. They are needed to ensure that the {\tt Fixpoint} definition
always terminates. The point of the {\tt \{struct \ident {\tt \}}}
annotation is to let the user tell the system which argument decreases
along the recursive calls. For instance, one can define the addition
function as :
\begin{coq_example}
Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (add p m)
end.
\end{coq_example}
The {\tt \{struct \ident {\tt \}}} annotation may be left implicit, in
this case the system try successively arguments from left to right
until it finds one that satisfies the decreasing condition. Note that
some fixpoints may have several arguments that fit as decreasing
arguments, and this choice influences the reduction of the
fixpoint. Hence an explicit annotation must be used if the leftmost
decreasing argument is not the desired one. Writing explicit
annotations can also speed up type-checking of large mutual fixpoints.
The {\tt match} operator matches a value (here \verb:n:) with the
various constructors of its (inductive) type. The remaining arguments
give the respective values to be returned, as functions of the
parameters of the corresponding constructor. Thus here when \verb:n:
equals \verb:O: we return \verb:m:, and when \verb:n: equals
\verb:(S p): we return \verb:(S (add p m)):.
The {\tt match} operator is formally described
in detail in Section~\ref{Caseexpr}. The system recognizes that in
the inductive call {\tt (add p m)} the first argument actually
decreases because it is a {\em pattern variable} coming from {\tt match
n with}.
\Example The following definition is not correct and generates an
error message:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(********* Error: Recursive call to wrongplus ... **********)
\end{coq_eval}
\begin{coq_example}
Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O => n
| S p => S (wrongplus n p)
end.
\end{coq_example}
because the declared decreasing argument {\tt n} actually does not
decrease in the recursive call. The function computing the addition
over the second argument should rather be written:
\begin{coq_example*}
Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.
\end{coq_example*}
The ordinary match operation on natural numbers can be mimicked in the
following way.
\begin{coq_example*}
Fixpoint nat_match
(C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
match n with
| O => f0
| S p => fS p (nat_match C f0 fS p)
end.
\end{coq_example*}
The recursive call may not only be on direct subterms of the recursive
variable {\tt n} but also on a deeper subterm and we can directly
write the function {\tt mod2} which gives the remainder modulo 2 of a
natural number.
\begin{coq_example*}
Fixpoint mod2 (n:nat) : nat :=
match n with
| O => O
| S p => match p with
| O => S O
| S q => mod2 q
end
end.
\end{coq_example*}
In order to keep the strong normalization property, the fixed point
reduction will only be performed when the argument in position of the
decreasing argument (which type should be in an inductive definition)
starts with a constructor.
The {\tt Fixpoint} construction enjoys also the {\tt with} extension
to define functions over mutually defined inductive types or more
generally any mutually recursive definitions.
\begin{Variants}
\item {\tt Fixpoint} {\ident$_1$} {\params$_1$} {\tt :} {\type$_1$} {\tt :=} {\term$_1$}\\
{\tt with} {\ldots} \\
{\tt with} {\ident$_m$} {\params$_m$} {\tt :} {\type$_m$} {\tt :=} {\term$_m$}\\
Allows to define simultaneously {\ident$_1$}, {\ldots},
{\ident$_m$}.
\end{Variants}
\Example
The size of trees and forests can be defined the following way:
\begin{coq_eval}
Reset Initial.
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_eval}
\begin{coq_example*}
Fixpoint tree_size (t:tree) : nat :=
match t with
| node a f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
A generic command {\tt Scheme} is useful to build automatically various
mutual induction principles. It is described in Section~\ref{Scheme}.
\subsubsection{Definitions of recursive objects in co-inductive types}
The command:
\begin{center}
\texttt{CoFixpoint {\ident} : \type$_0$ := \term$_0$}
\comindex{CoFixpoint}\label{CoFixpoint}
\end{center}
introduces a method for constructing an infinite object of a
coinduc\-tive type. For example, the stream containing all natural
numbers can be introduced applying the following method to the number
\texttt{O} (see Section~\ref{CoInductiveTypes} for the definition of
{\tt Stream}, {\tt hd} and {\tt tl}):
\begin{coq_eval}
Reset Initial.
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
Definition hd (x:Stream) := match x with
| Seq a s => a
end.
Definition tl (x:Stream) := match x with
| Seq a s => s
end.
\end{coq_eval}
\begin{coq_example}
CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
\end{coq_example}
Oppositely to recursive ones, there is no decreasing argument in a
co-recursive definition. To be admissible, a method of construction
must provide at least one extra constructor of the infinite object for
each iteration. A syntactical guard condition is imposed on
co-recursive definitions in order to ensure this: each recursive call
in the definition must be protected by at least one constructor, and
only by constructors. That is the case in the former definition, where
the single recursive call of \texttt{from} is guarded by an
application of \texttt{Seq}. On the contrary, the following recursive
function does not satisfy the guard condition:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(***************** Error: Unguarded recursive call *******************)
\end{coq_eval}
\begin{coq_example}
CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
\end{coq_example}
The elimination of co-recursive definition is done lazily, i.e. the
definition is expanded only when it occurs at the head of an
application which is the argument of a case analysis expression. In
any other context, it is considered as a canonical expression which is
completely evaluated. We can test this using the command
\texttt{Eval}, which computes the normal forms of a term:
\begin{coq_example}
Eval compute in (from 0).
Eval compute in (hd (from 0)).
Eval compute in (tl (from 0)).
\end{coq_example}
\begin{Variants}
\item{\tt CoFixpoint {\ident$_1$} {\params} :{\type$_1$} :=
{\term$_1$}}\\ As for most constructions, arguments of co-fixpoints
expressions can be introduced before the {\tt :=} sign.
\item{\tt CoFixpoint} {\ident$_1$} {\tt :} {\type$_1$} {\tt :=} {\term$_1$}\\
{\tt with}\\
\mbox{}\hspace{0.1cm} {\ldots} \\
{\tt with} {\ident$_m$} {\tt :} {\type$_m$} {\tt :=} {\term$_m$}\\
As in the \texttt{Fixpoint} command (see Section~\ref{Fixpoint}), it
is possible to introduce a block of mutually dependent methods.
\end{Variants}
%%
%% Theorems & Lemmas
%%
\subsection{Assertions and proofs}
\label{Assertions}
An assertion states a proposition (or a type) of which the proof (or
an inhabitant of the type) is interactively built using tactics. The
interactive proof mode is described in
Chapter~\ref{Proof-handling} and the tactics in Chapter~\ref{Tactics}.
The basic assertion command is:
\subsubsection{\tt Theorem {\ident} \zeroone{\binders} : {\type}.
\comindex{Theorem}}
After the statement is asserted, {\Coq} needs a proof. Once a proof of
{\type} under the assumptions represented by {\binders} is given and
validated, the proof is generalized into a proof of {\tt forall
\zeroone{\binders}, {\type}} and the theorem is bound to the name
{\ident} in the environment.
\begin{ErrMsgs}
\item \errindex{The term {\form} has type {\ldots} which should be Set,
Prop or Type}
\item \errindexbis{{\ident} already exists}{already exists}
The name you provided is already defined. You have then to choose
another name.
\end{ErrMsgs}
\begin{Variants}
\item {\tt Lemma {\ident} \zeroone{\binders} : {\type}.}\comindex{Lemma}\\
{\tt Remark {\ident} \zeroone{\binders} : {\type}.}\comindex{Remark}\\
{\tt Fact {\ident} \zeroone{\binders} : {\type}.}\comindex{Fact}\\
{\tt Corollary {\ident} \zeroone{\binders} : {\type}.}\comindex{Corollary}\\
{\tt Proposition {\ident} \zeroone{\binders} : {\type}.}\comindex{Proposition}
These commands are synonyms of \texttt{Theorem {\ident} \zeroone{\binders} : {\type}}.
\item {\tt Theorem \nelist{{\ident} \zeroone{\binders}: {\type}}{with}.}
This command is useful for theorems that are proved by simultaneous
induction over a mutually inductive assumption, or that assert mutually
dependent statements in some mutual co-inductive type. It is equivalent
to {\tt Fixpoint} or {\tt CoFixpoint}
(see Section~\ref{CoFixpoint}) but using tactics to build the proof of
the statements (or the body of the specification, depending on the
point of view). The inductive or co-inductive types on which the
induction or coinduction has to be done is assumed to be non ambiguous
and is guessed by the system.
Like in a {\tt Fixpoint} or {\tt CoFixpoint} definition, the induction
hypotheses have to be used on {\em structurally smaller} arguments
(for a {\tt Fixpoint}) or be {\em guarded by a constructor} (for a {\tt
CoFixpoint}). The verification that recursive proof arguments are
correct is done only at the time of registering the lemma in the
environment. To know if the use of induction hypotheses is correct at
some time of the interactive development of a proof, use the command
{\tt Guarded} (see Section~\ref{Guarded}).
The command can be used also with {\tt Lemma},
{\tt Remark}, etc. instead of {\tt Theorem}.
\item {\tt Definition {\ident} \zeroone{\binders} : {\type}.}
This allows to define a term of type {\type} using the proof editing mode. It
behaves as {\tt Theorem} but is intended to be used in conjunction with
{\tt Defined} (see \ref{Defined}) in order to define a
constant of which the computational behavior is relevant.
The command can be used also with {\tt Example} instead
of {\tt Definition}.
\SeeAlso Sections~\ref{Opaque} and~\ref{Transparent} ({\tt Opaque}
and {\tt Transparent}) and~\ref{unfold} (tactic {\tt unfold}).
\item {\tt Let {\ident} \zeroone{\binders} : {\type}.}
Like {\tt Definition {\ident} \zeroone{\binders} : {\type}.} except
that the definition is turned into a local definition generalized over
the declarations depending on it after closing the current section.
\item {\tt Fixpoint \nelist{{\ident} {\binders} \zeroone{\annotation} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
\comindex{Fixpoint}
This generalizes the syntax of {\tt Fixpoint} so that one or more
bodies can be defined interactively using the proof editing mode (when
a body is omitted, its type is mandatory in the syntax). When the
block of proofs is completed, it is intended to be ended by {\tt
Defined}.
\item {\tt CoFixpoint \nelist{{\ident} \zeroone{\binders} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.}
\comindex{CoFixpoint}
This generalizes the syntax of {\tt CoFixpoint} so that one or more bodies
can be defined interactively using the proof editing mode.
\end{Variants}
\subsubsection{{\tt Proof.} {\dots} {\tt Qed.}
\comindex{Proof}
\comindex{Qed}}
A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the
proof editing mode until the proof is completed. The proof editing
mode essentially contains tactics that are described in chapter
\ref{Tactics}. Besides tactics, there are commands to manage the proof
editing mode. They are described in Chapter~\ref{Proof-handling}. When
the proof is completed it should be validated and put in the
environment using the keyword {\tt Qed}.
\medskip
\ErrMsg
\begin{enumerate}
\item \errindex{{\ident} already exists}
\end{enumerate}
\begin{Remarks}
\item Several statements can be simultaneously asserted.
\item Not only other assertions but any vernacular command can be given
while in the process of proving a given assertion. In this case, the command is
understood as if it would have been given before the statements still to be
proved.
\item {\tt Proof} is recommended but can currently be omitted. On the
opposite side, {\tt Qed} (or {\tt Defined}, see below) is mandatory to
validate a proof.
\item Proofs ended by {\tt Qed} are declared opaque. Their content
cannot be unfolded (see \ref{Conversion-tactics}), thus realizing
some form of {\em proof-irrelevance}. To be able to unfold a proof,
the proof should be ended by {\tt Defined} (see below).
\end{Remarks}
\begin{Variants}
\item \comindex{Defined}
{\tt Proof.} {\dots} {\tt Defined.}\\
Same as {\tt Proof.} {\dots} {\tt Qed.} but the proof is
then declared transparent, which means that its
content can be explicitly used for type-checking and that it
can be unfolded in conversion tactics (see
\ref{Conversion-tactics}, \ref{Opaque}, \ref{Transparent}).
%Not claimed to be part of Gallina...
%\item {\tt Proof.} {\dots} {\tt Save.}\\
% Same as {\tt Proof.} {\dots} {\tt Qed.}
%\item {\tt Goal} \type {\dots} {\tt Save} \ident \\
% Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.}
% This is intended to be used in the interactive mode.
\item \comindex{Admitted}
{\tt Proof.} {\dots} {\tt Admitted.}\\
Turns the current asserted statement into an axiom and exits the
proof mode.
\end{Variants}
% Local Variables:
% mode: LaTeX
% TeX-master: "Reference-Manual"
% End:
|