aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/faq/interval_discr.v
blob: 671dc988a2a31062be670b1479cc939c92b65e9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m

  - preliminary results on the irrelevance of boundedness proofs
  - introduce the notion of finite cardinal |A|
  - prove that |{p:nat|p<=n}| = n
  - prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
  - prove that equality is decidable on A
  - conclude
*)

(** * Preliminary results on [nat] and [le] *)

(** Proving axiom K on [nat] *)

Require Import Eqdep_dec.
Require Import Arith.

Theorem eq_rect_eq_nat :
  forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
Proof.
intros.
apply K_dec_set with (p := h).
apply eq_nat_dec.
reflexivity.
Qed.

(** Proving unicity of proofs of [(n<=m)%nat] *)

Scheme le_ind' := Induction for le Sort Prop.

Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
 replace (le_n n) with
  (eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
 2:reflexivity.
  generalize (eq_refl n).
    pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
     rewrite <- eq_rect_eq_nat; trivial.
     contradiction (le_Sn_n m); rewrite <- e; assumption.
 replace (le_S n m p) with
  (eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
 2:reflexivity.
  generalize (eq_refl (S m)).
    pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
     contradiction (le_Sn_n m); rewrite Heq; assumption.
     injection HeqS; intro Heq; generalize l HeqS.
      rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
      rewrite (IHp l0); reflexivity.
Qed.

(** Proving irrelevance of boundedness proofs while building
    elements of interval *)

Lemma dep_pair_intro :
  forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
    exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
Proof.
intros n x y Hx Hy Heq.
generalize Hy.
rewrite <- Heq.
intros.
rewrite (le_uniqueness_proof x n Hx Hy0).
reflexivity.
Qed.

(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)

(** Definition of having finite cardinality [n+1] for a set [A] *)

Definition card (A:Set) n :=
  exists f,
    (forall x:A, f x <= n) /\
    (forall x y:A, f x = f y -> x = y) /\
    (forall m, m <= n -> exists x:A, f x = m).

Require Import Arith.

(** Showing that the interval [0;n] has cardinality [n+1] *)

Theorem card_interval : forall n, card {x:nat|x<=n} n.
Proof.
intro n.
exists (fun x:{x:nat|x<=n} => proj1_sig x).
split.
(* bounded *)
intro x; apply (proj2_sig x).
split.
(* injectivity *)
intros (p,Hp) (q,Hq).
simpl.
intro Hpq.
apply dep_pair_intro; assumption.
(* surjectivity *)
intros m Hmn.
exists (exist (fun x : nat => x <= n) m Hmn).
reflexivity.
Qed.

(** Showing that equality on the interval [0;n] is decidable *)

Lemma interval_dec :
  forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
Proof.
intros n (p,Hp).
induction p; intros ([|q],Hq).
left.
  apply dep_pair_intro.
  reflexivity.
right.
  intro H; discriminate H.
right.
  intro H; discriminate H.
assert (Hp' : p <= n).
  apply le_Sn_le; assumption.
assert (Hq' : q <= n).
  apply le_Sn_le; assumption.
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
  as [Heq|Hneq].
left.
  injection Heq; intro Heq'.
  apply dep_pair_intro.
  apply eq_S.
  assumption.
right.
  intro HeqS.
  injection HeqS; intro Heq.
  apply Hneq.
  apply dep_pair_intro.
  assumption.
Qed.

(** Showing that the cardinality relation is functional on decidable sets *)

Lemma card_inj_aux :
  forall (A:Type) f g n,
    (forall x:A, f x <= 0) ->
    (forall x y:A, f x = f y -> x = y) ->
    (forall m, m <= S n -> exists x:A, g x = m)
     -> False.
Proof.
intros A f g n Hfbound Hfinj Hgsurj.
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
assert (Hfx : 0 = f x).
apply le_n_O_eq.
apply Hfbound.
assert (Hfx' : 0 = f x').
apply le_n_O_eq.
apply Hfbound.
assert (x=x').
apply Hfinj.
rewrite <- Hfx.
rewrite <- Hfx'.
reflexivity.
rewrite H in Hx.
rewrite Hx' in Hx.
apply (n_Sn _ Hx).
Qed.

(** For [dec_restrict], we use a lemma on the negation of equality
that requires proof-irrelevance. It should be possible to avoid this
lemma by generalizing over a first-order definition of [x<>y], say
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
[neq], unicity of proofs could be proven *)

  Require Import Classical.
  Lemma neq_dep_intro :
   forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
      exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
  Proof.
  intros A z x y p q Heq.
   generalize q; clear q; rewrite <- Heq; intro q.
   rewrite (proof_irrelevance _ p q); reflexivity.
  Qed.

Lemma dec_restrict :
  forall (A:Set),
    (forall x y :A, {x=y}+{x<>y}) ->
     forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
Proof.
intros A Hdec z (x,Hx) (y,Hy).
destruct (Hdec x y) as [Heq|Hneq].
left; apply neq_dep_intro; assumption.
right; intro Heq; injection Heq; exact Hneq.
Qed.

Lemma pred_inj : forall n m,
  0 <> n -> 0 <> m -> pred m = pred n -> m = n.
Proof.
destruct n.
intros m H; destruct H; reflexivity.
destruct m.
intros _ H; destruct H; reflexivity.
simpl; intros _ _ H.
rewrite H.
reflexivity.
Qed.

Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
Proof.
intros n m Hle Hneq.
destruct (le_lt_eq_dec n m Hle).
assumption.
contradiction.
Qed.

Lemma inj_restrict :
  forall (A:Set) (f:A->nat) x y z,
    (forall x y : A, f x = f y -> x = y)
    -> x <> z -> f y < f z -> f z <= f x
    -> pred (f x) = f y
    -> False.

(* Search error sans le type de f !! *)
Proof.
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
assert (f z <> f x).
  apply not_eq_sym.
  intro Heqf.
  apply Hneqx.
  apply Hfinj.
  assumption.
assert (f x = S (f y)).
  assert (0 < f x).
    apply le_lt_trans with (f z).
    apply le_O_n.
    apply le_neq_lt; assumption.
  apply pred_inj.
  apply O_S.
  apply lt_O_neq; assumption.
  exact Heq.
assert (f z <= f y).
destruct (le_lt_or_eq _ _ Hfx).
  apply lt_n_Sm_le.
  rewrite <- H0.
  assumption.
  contradiction Hneqx.
  symmetry.
  apply Hfinj.
  assumption.
contradiction (lt_not_le (f y) (f z)).
Qed.

Theorem card_inj : forall m n (A:Set),
  (forall x y :A, {x=y}+{x<>y}) ->
  card A m -> card A n -> m = n.
Proof.
induction m; destruct n;
intros A Hdec
 (f,(Hfbound,(Hfinj,Hfsurj)))
 (g,(Hgbound,(Hginj,Hgsurj))).
(* 0/0 *)
reflexivity.
(* 0/Sm *)
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
(* Sn/0 *)
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
(* Sn/Sm *)
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
reflexivity.
(* decidability of eq on {x:A|x<>xSm} *)
apply dec_restrict.
assumption.
(* cardinality of {x:A|x<>xSn} is m *)
pose (f' := fun x' : {x:A|x<>xSn} =>
    let (x,Hneq) := x' in
    if le_lt_dec (f xSn) (f x)
    then pred (f x)
    else f x).
exists f'.
split.
(* f' is bounded *)
unfold f'.
intros (x,_).
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
change m with (pred (S m)).
apply le_pred.
apply Hfbound.
apply le_S_n.
apply le_trans with (f xSn).
exact Hge.
apply Hfbound.
split.
(* f' is injective *)
unfold f'.
intros (x,Hneqx) (y,Hneqy) Heqf'.
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
(* f xSn <= f x et f xSn <= f y *)
assert (Heq : x = y).
  apply Hfinj.
  assert (f xSn <> f y).
    apply not_eq_sym.
    intro Heqf.
    apply Hneqy.
    apply Hfinj.
    assumption.
  assert (0 < f y).
    apply le_lt_trans with (f xSn).
    apply le_O_n.
    apply le_neq_lt; assumption.
  assert (f xSn <> f x).
    apply not_eq_sym.
    intro Heqf.
    apply Hneqx.
    apply Hfinj.
    assumption.
  assert (0 < f x).
    apply le_lt_trans with (f xSn).
    apply le_O_n.
    apply le_neq_lt; assumption.
  apply pred_inj.
  apply lt_O_neq; assumption.
  apply lt_O_neq; assumption.
  assumption.
apply neq_dep_intro; assumption.
(* f y < f xSn <= f x *)
destruct (inj_restrict A f x y xSn); assumption.
(* f x < f xSn <= f y *)
symmetry in Heqf'.
destruct (inj_restrict A f y x xSn); assumption.
(* f x < f xSn et f y < f xSn *)
assert (Heq : x=y).
  apply Hfinj; assumption.
apply neq_dep_intro; assumption.
(* f' is surjective *)
intros p Hlep.
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
(* case f xSn <= p *)
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
  intro Heqx.
  rewrite Heqx in Hx.
  rewrite Hx in Hle.
  apply le_Sn_n with p; assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
rewrite Hx; reflexivity.
rewrite Hx in Hlt'.
contradiction (le_not_lt (f xSn) p).
apply lt_trans with (S p).
apply lt_n_Sn.
assumption.
(* case p < f xSn *)
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
  intro Heqx.
  rewrite Heqx in Hx.
  rewrite Hx in Hlt.
  apply (lt_irrefl p).
  assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
  rewrite Hx in Hle'.
  contradiction (lt_irrefl p).
  apply lt_le_trans with (f xSn); assumption.
  assumption.
(* cardinality of {x:A|x<>xSn} is n *)
pose (g' := fun x' : {x:A|x<>xSn} =>
   let (x,Hneq) := x' in
   if Hdec x xSn then 0 else g x).
exists g'.
split.
(* g is bounded *)
unfold g'.
intros (x,_).
destruct (Hdec x xSn) as [_|Hneq].
apply le_O_n.
assert (Hle_gx:=Hgbound x).
destruct (le_lt_or_eq _ _ Hle_gx).
apply lt_n_Sm_le.
assumption.
contradiction Hneq.
apply Hginj.
rewrite HSnx.
assumption.
split.
(* g is injective *)
unfold g'.
intros (x,Hneqx) (y,Hneqy) Heqg'.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneqx.
destruct (Hdec y xSn) as [Heqy|_].
contradiction Hneqy.
assert (Heq : x=y).
  apply Hginj; assumption.
apply neq_dep_intro; assumption.
(* g is surjective *)
intros p Hlep.
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x<>xSn).
  intro Heq.
  rewrite Heq in Hx.
  rewrite Hx in HSnx.
  rewrite HSnx in Hlep.
  contradiction (le_Sn_n _ Hlep).
exists (exist (fun a => a<>xSn) x Hneq).
simpl.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneq.
assumption.
Qed.

(** Conclusion *)

Theorem interval_discr :
  forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
Proof.
intros n m Heq.
apply card_inj with (A := {p:nat|p<=n}).
apply interval_dec.
apply card_interval.
rewrite Heq.
apply card_interval.
Qed.