1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
|
\chapter{Detailed examples of tactics}
\label{Tactics-examples}
This chapter presents detailed examples of certain tactics, to
illustrate their behavior.
\section{\tt refine}
\tacindex{refine}
\label{refine-example}
This tactic applies to any goal. It behaves like {\tt exact} with a
big difference : the user can leave some holes (denoted by \texttt{?} or
{\tt (?::}{\it type}{\tt )}) in the term.
{\tt refine} will generate as many
subgoals as they are holes in the term. The type of holes must be
either synthesized by the system or declared by an
explicit cast like \verb|(?::nat->Prop)|. This low-level
tactic can be useful to advanced users.
%\firstexample
\Example
\begin{coq_example*}
Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.
\end{coq_example}
\begin{coq_example}
Definition get : forall x:Option, x <> Fail -> bool.
refine
(fun x:Option =>
match x return x <> Fail -> bool with
| Fail => _
| Ok b => fun _ => b
end).
intros; absurd (Fail = Fail); trivial.
\end{coq_example}
\begin{coq_example*}
Defined.
\end{coq_example*}
% \example{Using Refine to build a poor-man's ``Cases'' tactic}
% \texttt{Refine} is actually the only way for the user to do
% a proof with the same structure as a {\tt Cases} definition. Actually,
% the tactics \texttt{case} (see \ref{case}) and \texttt{Elim} (see
% \ref{elim}) only allow one step of elementary induction.
% \begin{coq_example*}
% Require Bool.
% Require Arith.
% \end{coq_example*}
% %\begin{coq_eval}
% %Abort.
% %\end{coq_eval}
% \begin{coq_example}
% Definition one_two_or_five := [x:nat]
% Cases x of
% (1) => true
% | (2) => true
% | (5) => true
% | _ => false
% end.
% Goal (x:nat)(Is_true (one_two_or_five x)) -> x=(1)\/x=(2)\/x=(5).
% \end{coq_example}
% A traditional script would be the following:
% \begin{coq_example*}
% Destruct x.
% Tauto.
% Destruct n.
% Auto.
% Destruct n0.
% Auto.
% Destruct n1.
% Tauto.
% Destruct n2.
% Tauto.
% Destruct n3.
% Auto.
% Intros; Inversion H.
% \end{coq_example*}
% With the tactic \texttt{Refine}, it becomes quite shorter:
% \begin{coq_example*}
% Restart.
% \end{coq_example*}
% \begin{coq_example}
% Refine [x:nat]
% <[y:nat](Is_true (one_two_or_five y))->(y=(1)\/y=(2)\/y=(5))>
% Cases x of
% (1) => [H]?
% | (2) => [H]?
% | (5) => [H]?
% | n => [H](False_ind ? H)
% end; Auto.
% \end{coq_example}
% \begin{coq_eval}
% Abort.
% \end{coq_eval}
\section{\tt eapply}
\tacindex{eapply}
\label{eapply-example}
\Example
Assume we have a relation on {\tt nat} which is transitive:
\begin{coq_example*}
Variable R : nat -> nat -> Prop.
Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Variables n m p : nat.
Hypothesis Rnm : R n m.
Hypothesis Rmp : R m p.
\end{coq_example*}
Consider the goal {\tt (R n p)} provable using the transitivity of
{\tt R}:
\begin{coq_example*}
Goal R n p.
\end{coq_example*}
The direct application of {\tt Rtrans} with {\tt Apply} fails because
no value for {\tt y} in {\tt Rtrans} is found by {\tt Apply}:
\begin{coq_eval}
Set Printing Depth 50.
\end{coq_eval}
% (********** The following is not correct and should produce **********)
% (**** Error: generated subgoal (R n ?17) has metavariables in it *****)
% (* Just to adjust the prompt: *) apply Rtrans.
\begin{coq_example}
apply Rtrans.
\end{coq_example}
A solution is to rather apply {\tt (Rtrans n m p)}.
\begin{coq_example}
apply (Rtrans n m p).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
More elegantly, {\tt apply Rtrans with y:=m} allows to only mention
the unknown {\tt m}:
\begin{coq_example}
apply Rtrans with (y := m).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
Another solution is to mention the proof of {\tt (R x y)} in {\tt
Rtrans}...
\begin{coq_example}
apply Rtrans with (1 := Rnm).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
... or the proof of {\tt (R y z)}:
\begin{coq_example}
apply Rtrans with (2 := Rmp).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
On the opposite, one can use {\tt eapply} which postpone the problem
of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt
Rmp}. This instantiates the existential variable and completes the proof.
\begin{coq_example}
eapply Rtrans.
apply Rnm.
apply Rmp.
\end{coq_example}
\begin{coq_eval}
Reset R.
\end{coq_eval}
\section{{\tt Scheme}}
\comindex{Scheme}
\label{Scheme-examples}
\firstexample
\example{Induction scheme for \texttt{tree} and \texttt{forest}}
The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:
\begin{coq_eval}
Reset Initial.
Variables A B :
Set.
\end{coq_eval}
\begin{coq_example*}
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
Scheme tree_forest_rec := Induction for tree
Sort Set
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}
You may now look at the type of {\tt tree\_forest\_rec}:
\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}
This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.
The principle {\tt tree\_forest\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.
\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}
\example{Predicates {\tt odd} and {\tt even} on naturals}
Let {\tt odd} and {\tt even} be inductively defined as:
\begin{coq_eval}
Reset Initial.
Open Scope nat_scope.
\end{coq_eval}
\begin{coq_example*}
Inductive odd : nat -> Prop :=
oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
\end{coq_example*}
The following command generates a powerful elimination
principle:
\begin{coq_example}
Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
\end{coq_example}
The type of {\tt odd\_even} for instance will be:
\begin{coq_example}
Check odd_even.
\end{coq_example}
The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.
\section{{\tt Functional Scheme} and {\tt functional induction}}
\comindex{Functional Scheme}\tacindex{functional induction}
\label{FunScheme-examples}
\firstexample
\example{Induction scheme for \texttt{div2}}
We define the function \texttt{div2} as follows:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Require Import Arith.
Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S n0 => match n0 with
| O => 0
| S n' => S (div2 n')
end
end.
\end{coq_example*}
The definition of a principle of induction corresponding to the
recursive structure of \texttt{div2} is defined by the command:
\begin{coq_example}
Functional Scheme div2_ind := Induction for div2.
\end{coq_example}
You may now look at the type of {\tt div2\_ind}:
\begin{coq_example}
Check div2_ind.
\end{coq_example}
We can now prove the following lemma using this principle:
\begin{coq_example*}
Lemma div2_le' : forall n:nat, (div2 n <= n).
intro n.
pattern n.
\end{coq_example*}
\begin{coq_example}
apply div2_ind; intros.
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
simpl; auto with arith.
Qed.
\end{coq_example*}
Since \texttt{div2} is not mutually recursive, we can use
directly the \texttt{functional induction} tactic instead of
building the principle:
\begin{coq_example*}
Reset div2_ind.
Lemma div2_le : forall n:nat, (div2 n <= n).
intro n.
\end{coq_example*}
\begin{coq_example}
functional induction div2 n.
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
auto with arith.
Qed.
\end{coq_example*}
\paragraph{remark:} \texttt{functional induction} makes no use of
a induction principle, so be warned that each time it is used, a
term mimicking the structure of \texttt{div2} (roughly the size
of {\tt div2\_ind}) is built. Using \texttt{Functional Scheme} is
generally faster and less memory consuming. On the other hand
\texttt{functional induction} performs some extra simplifications
that \texttt{Functional Scheme} does not, and as it is a tactic
it can be used in tactic definitions.
\example{Induction scheme for \texttt{tree\_size}}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
We define trees by the following mutual inductive type:
\begin{coq_example*}
Variable A : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.
\end{coq_example*}
We define the function \texttt{tree\_size} that computes the size
of a tree or a forest.
\begin{coq_example*}
Fixpoint tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
The definition of principle of mutual induction following the
recursive structure of \texttt{tree\_size} is defined by the
command:
\begin{coq_example*}
Functional Scheme treeInd := Induction for tree_size
with tree_size forest_size.
\end{coq_example*}
You may now look at the type of {\tt treeInd}:
\begin{coq_example}
Check treeInd.
\end{coq_example}
\section{{\tt inversion}}
\tacindex{inversion}
\label{inversion-examples}
\subsection*{Generalities about inversion}
When working with (co)inductive predicates, we are very often faced to
some of these situations:
\begin{itemize}
\item we have an inconsistent instance of an inductive predicate in the
local context of hypotheses. Thus, the current goal can be trivially
proved by absurdity.
\item we have a hypothesis that is an instance of an inductive
predicate, and the instance has some variables whose constraints we
would like to derive.
\end{itemize}
The inversion tactics are very useful to simplify the work in these
cases. Inversion tools can be classified in three groups:
\begin{enumerate}
\item tactics for inverting an instance without stocking the inversion
lemma in the context; this includes the tactics
(\texttt{dependent}) \texttt{inversion} and
(\texttt{dependent}) \texttt{inversion\_clear}.
\item commands for generating and stocking in the context the inversion
lemma corresponding to an instance; this includes \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion} and \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion\_clear}.
\item tactics for inverting an instance using an already defined
inversion lemma; this includes the tactic \texttt{inversion \ldots using}.
\end{enumerate}
As inversion proofs may be large in size, we recommend the user to
stock the lemmas whenever the same instance needs to be inverted
several times.
\firstexample
\example{Non-dependent inversion}
Let's consider the relation \texttt{Le} over natural numbers and the
following variables:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Variable P : nat -> nat -> Prop.
Variable Q : forall n m:nat, Le n m -> Prop.
\end{coq_example*}
For example, consider the goal:
\begin{coq_eval}
Lemma ex : forall n m:nat, Le (S n) m -> P n m.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
To prove the goal we may need to reason by cases on \texttt{H} and to
derive that \texttt{m} is necessarily of
the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
Deriving these conditions corresponds to prove that the
only possible constructor of \texttt{(Le (S n) m)} is
\texttt{LeS} and that we can invert the
\texttt{->} in the type of \texttt{LeS}.
This inversion is possible because \texttt{Le} is the smallest set closed by
the constructors \texttt{LeO} and \texttt{LeS}.
\begin{coq_example}
inversion_clear H.
\end{coq_example}
Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
and that the hypothesis \texttt{(Le n m0)} has been added to the
context.
Sometimes it is
interesting to have the equality \texttt{m=(S m0)} in the
context to use it after. In that case we can use \texttt{inversion} that
does not clear the equalities:
\begin{coq_example*}
Undo.
\end{coq_example*}
\begin{coq_example}
inversion H.
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
\example{Dependent Inversion}
Let us consider the following goal:
\begin{coq_eval}
Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
As \texttt{H} occurs in the goal, we may want to reason by cases on its
structure and so, we would like inversion tactics to
substitute \texttt{H} by the corresponding term in constructor form.
Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
substitution.
To have such a behavior we use the dependent inversion tactics:
\begin{coq_example}
dependent inversion_clear H.
\end{coq_example}
Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
\texttt{m} by \texttt{(S m0)}.
\example{using already defined inversion lemmas}
\begin{coq_eval}
Abort.
\end{coq_eval}
For example, to generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
\begin{coq_example*}
Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Prop.
\end{coq_example*}
\begin{coq_example}
Check leminv.
\end{coq_example}
Then we can use the proven inversion lemma:
\begin{coq_example}
Show.
\end{coq_example}
\begin{coq_example}
inversion H using leminv.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\section{\tt autorewrite}
\label{autorewrite-example}
Here are two examples of {\tt autorewrite} use. The first one ({\em Ackermann
function}) shows actually a quite basic use where there is no conditional
rewriting. The second one ({\em Mac Carthy function}) involves conditional
rewritings and shows how to deal with them using the optional tactic of the
{\tt Hint~Rewrite} command.
\firstexample
\example{Ackermann function}
%Here is a basic use of {\tt AutoRewrite} with the Ackermann function:
\begin{coq_example*}
Require Import Arith.
Variable Ack :
nat -> nat -> nat.
Axiom Ack0 :
forall m:nat, Ack 0 m = S m.
Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
\end{coq_example*}
\begin{coq_example}
Hint Rewrite [ Ack0 Ack1 Ack2 ] in base0.
Lemma ResAck0 :
Ack 3 2 = 29.
autorewrite [ base0 ] using try reflexivity.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\example{Mac Carthy function}
%The Mac Carthy function shows a more complex case:
\begin{coq_example*}
Require Import Omega.
Variable g :
nat -> nat -> nat.
Axiom g0 :
forall m:nat, g 0 m = m.
Axiom
g1 :
forall n m:nat,
(n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
Axiom
g2 :
forall n m:nat,
(n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).
\end{coq_example*}
\begin{coq_example}
Hint Rewrite [ g0 g1 g2 ] in base1 using omega.
Lemma Resg0 :
g 1 110 = 100.
autorewrite [ base1 ] using reflexivity || simpl.
\end{coq_example}
\begin{coq_eval}
Abort.
\end{coq_eval}
\begin{coq_example}
Lemma Resg1 : g 1 95 = 91.
autorewrite [ base1 ] using reflexivity || simpl.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\section{\tt quote}
\tacindex{quote}
\label{quote-examples}
The tactic \texttt{quote} allows to use Barendregt's so-called
2-level approach without writing any ML code. Suppose you have a
language \texttt{L} of
'abstract terms' and a type \texttt{A} of 'concrete terms'
and a function \texttt{f : L -> A}. If \texttt{L} is a simple
inductive datatype and \texttt{f} a simple fixpoint, \texttt{quote f}
will replace the head of current goal by a convertible term of the form
\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A
-> L}.
Here is an example:
\begin{coq_example}
Require Import Quote.
Parameters A B C : Prop.
Inductive formula : Type :=
| f_and : formula -> formula -> formula (* binary constructor *)
| f_or : formula -> formula -> formula
| f_not : formula -> formula (* unary constructor *)
| f_true : formula (* 0-ary constructor *)
| f_const : Prop -> formula (* contructor for constants *).
Fixpoint interp_f (f:
formula) : Prop :=
match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f f2
| f_not f1 => ~ interp_f f1
| f_true => True
| f_const c => c
end.
Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
quote interp_f.
\end{coq_example}
The algorithm to perform this inversion is: try to match the
term with right-hand sides expression of \texttt{f}. If there is a
match, apply the corresponding left-hand side and call yourself
recursively on sub-terms. If there is no match, we are at a leaf:
return the corresponding constructor (here \texttt{f\_const}) applied
to the term.
\begin{ErrMsgs}
\item \errindex{quote: not a simple fixpoint} \\
Happens when \texttt{quote} is not able to perform inversion properly.
\end{ErrMsgs}
\subsection{Introducing variables map}
The normal use of \texttt{quote} is to make proofs by reflection: one
defines a function \texttt{simplify : formula -> formula} and proves a
theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) ->
(interp\_f f)}. Then, one can simplify formulas by doing:
\begin{verbatim}
quote interp_f.
apply simplify_ok.
compute.
\end{verbatim}
But there is a problem with leafs: in the example above one cannot
write a function that implements, for example, the logical simplifications
$A \wedge A \ra A$ or $A \wedge \neg A \ra \texttt{False}$. This is
because the \Prop{} is impredicative.
It is better to use that type of formulas:
\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example}
Inductive formula : Set :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_atom : index -> formula.
\end{coq_example*}
\texttt{index} is defined in module \texttt{quote}. Equality on that
type is decidable so we are able to simplify $A \wedge A$ into $A$ at
the abstract level.
When there are variables, there are bindings, and \texttt{quote}
provides also a type \texttt{(varmap A)} of bindings from
\texttt{index} to any set \texttt{A}, and a function
\texttt{varmap\_find} to search in such maps. The interpretation
function has now another argument, a variables map:
\begin{coq_example}
Fixpoint interp_f (vm:
varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_atom i => varmap_find True i vm
end.
\end{coq_example}
\noindent\texttt{quote} handles this second case properly:
\begin{coq_example}
Goal A /\ (B \/ A) /\ (A \/ ~ B).
quote interp_f.
\end{coq_example}
It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is
convertible with the conclusion of current goal.
\subsection{Combining variables and constants}
One can have both variables and constants in abstracts terms; that is
the case, for example, for the \texttt{ring} tactic (chapter
\ref{ring}). Then one must provide to \texttt{quote} a list of
\emph{constructors of constants}. For example, if the list is
\texttt{[O S]} then closed natural numbers will be considered as
constants and other terms as variables.
Example:
\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example*}
Inductive formula : Type :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_const : Prop -> formula (* constructor for constants *)
| f_atom : index -> formula.
Fixpoint interp_f
(vm: (* constructor for variables *)
varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_const c => c
| f_atom i => varmap_find True i vm
end.
Goal
A /\ (A \/ True) /\ ~ B /\ (C <-> C).
\end{coq_example*}
\begin{coq_example}
quote interp_f [ A B ].
Undo.
quote interp_f [ B C iff ].
\end{coq_example}
\Warning Since function inversion
is undecidable in general case, don't expect miracles from it!
% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v}
\SeeAlso comments of source file \texttt{tactics/contrib/polynom/quote.ml}
\SeeAlso the tactic \texttt{Ring} (chapter \ref{Ring})
\section{Using the tactical language}
\subsection{About the cardinality of the natural number set}
A first example which shows how to use the pattern matching over the proof
contexts is the proof that natural numbers have more than two elements. The
proof of such a lemma can be done as shown in table~\ref{cnatltac}.
\begin{coq_eval}
Reset Initial.
Require Import Arith.
Require Import List.
\end{coq_eval}
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example*}
Lemma card_nat :
~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
Proof.
red; intros (x, (y, Hy)).
elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
cut (b = c); [ discriminate | apply trans_equal with a; auto ]
end.
Qed.
\end{coq_example*}
}}
\caption{A proof on cardinality of natural numbers}
\label{cnatltac}
\end{table}
We can notice that all the (very similar) cases coming from the three
eliminations (with three distinct natural numbers) are successfully solved by
a {\tt match goal} structure and, in particular, with only one pattern (use
of non-linear matching).
\subsection{Permutation on closed lists}
Another more complex example is the problem of permutation on closed lists. The
aim is to show that a closed list is a permutation of another one.
First, we define the permutation predicate as shown in table~\ref{permutpred}.
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example*}
Section Sort.
Variable A : Set.
Inductive permut : list A -> list A -> Prop :=
| permut_refl : forall l, permut l l
| permut_cons :
forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
| permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
| permut_trans :
forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
End Sort.
\end{coq_example*}
}}
\caption{Definition of the permutation predicate}
\label{permutpred}
\end{table}
Next, we can write naturally the tactic and the result can be seen in
table~\ref{permutltac}. We can notice that we use two toplevel definitions {\tt
PermutProve} and {\tt Permut}. The function to be called is {\tt PermutProve}
which computes the lengths of the two lists and calls {\tt Permut} with the
length if the two lists have the same length. {\tt Permut} works as expected.
If the two lists are equal, it concludes. Otherwise, if the lists have
identical first elements, it applies {\tt Permut} on the tail of the lists.
Finally, if the lists have different first elements, it puts the first element
of one of the lists (here the second one which appears in the {\tt permut}
predicate) at the end if that is possible, i.e., if the new first element has
been at this place previously. To verify that all rotations have been done for
a list, we use the length of the list as an argument for {\tt Permut} and this
length is decremented for each rotation down to, but not including, 1 because
for a list of length $n$, we can make exactly $n-1$ rotations to generate at
most $n$ distinct lists. Here, it must be noticed that we use the natural
numbers of {\Coq} for the rotation counter. In table~\ref{ltac}, we can see
that it is possible to use usual natural numbers but they are only used as
arguments for primitive tactics and they cannot be handled, in particular, we
cannot make computations with them. So, a natural choice is to use {\Coq} data
structures so that {\Coq} makes the computations (reductions) by {\tt eval
compute in} and we can get the terms back by {\tt match}.
\begin{table}[p]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example}
Ltac Permut n :=
match goal with
| |- (permut _ ?l ?l) => apply permut_refl
| |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
let newn := eval compute in (length l1) in
(apply permut_cons; Permut newn)
| |- (permut ?A (?a :: ?l1) ?l2) =>
match eval compute in n with
| 1 => fail
| _ =>
let l1' := constr:(l1 ++ a :: nil) in
(apply (permut_trans A (a :: l1) l1' l2);
[ apply permut_append | compute; Permut (pred n) ])
end
end.
Ltac PermutProve :=
match goal with
| |- (permut _ ?l1 ?l2) =>
match eval compute in (length l1 = length l2) with
| (?n = ?n) => Permut n
end
end.
\end{coq_example}
}}
\caption{Permutation tactic}
\label{permutltac}
\end{table}
With {\tt PermutProve}, we can now prove lemmas such those shown in
table~\ref{permutlem}.
\begin{table}[p]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example*}
Lemma permut_ex1 :
permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
Proof.
PermutProve.
Qed.
Lemma permut_ex2 :
permut nat
(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
(0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
Proof.
PermutProve.
Qed.
\end{coq_example*}
}}
\caption{Examples of {\tt PermutProve} use}
\label{permutlem}
\end{table}
\subsection{Deciding intuitionistic propositional logic}
The pattern matching on goals allows a complete and so a powerful
backtracking when returning tactic values. An interesting application
is the problem of deciding intuitionistic propositional
logic. Considering the contraction-free sequent calculi {\tt LJT*} of
Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
using the tactic language as shown in table~\ref{tautoltac}. The
tactic {\tt Axioms} tries to conclude using usual axioms. The tactic
{\tt DSimplif} applies all the reversible rules of Dyckhoff's
system. Finally, the tactic {\tt TautoProp} (the main tactic to be
called) simplifies with {\tt DSimplif}, tries to conclude with {\tt
Axioms} and tries several paths using the backtracking rules (one of
the four Dyckhoff's rules for the left implication to get rid of the
contraction and the right or).
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example}
Ltac Axioms :=
match goal with
| |- True => trivial
| _:False |- _ => elimtype False; assumption
| _:?A |- ?A => auto
end.
Ltac DSimplif :=
repeat
(intros;
match goal with
| id:(~ _) |- _ => red in id
| id:(_ /\ _) |- _ =>
elim id; do 2 intro; clear id
| id:(_ \/ _) |- _ =>
elim id; intro; clear id
| id:(?A /\ ?B -> ?C) |- _ =>
cut (A -> B -> C);
[ intro | intros; apply id; split; assumption ]
| id:(?A \/ ?B -> ?C) |- _ =>
cut (B -> C);
[ cut (A -> C);
[ intros; clear id
| intro; apply id; left; assumption ]
| intro; apply id; right; assumption ]
| id0:(?A -> ?B),id1:?A |- _ =>
cut B; [ intro; clear id0 | apply id0; assumption ]
| |- (_ /\ _) => split
| |- (~ _) => red
end).
Ltac TautoProp :=
DSimplif;
Axioms ||
match goal with
| id:((?A -> ?B) -> ?C) |- _ =>
cut (B -> C);
[ intro; cut (A -> B);
[ intro; cut C;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; intro; assumption ]; TautoProp
| id:(~ ?A -> ?B) |- _ =>
cut (False -> B);
[ intro; cut (A -> False);
[ intro; cut B;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; red; intro; assumption ]; TautoProp
| |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
end.
\end{coq_example}
}}
\caption{Deciding intuitionistic propositions}
\label{tautoltac}
\end{table}
For example, with {\tt TautoProp}, we can prove tautologies like those in
table~\ref{tautolem}.
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example*}
Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Proof.
TautoProp.
Qed.
Lemma tauto_ex2 :
forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof.
TautoProp.
Qed.
\end{coq_example*}
}}
\caption{Proofs of tautologies with {\tt TautoProp}}
\label{tautolem}
\end{table}
\subsection{Deciding type isomorphisms}
A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
table~\ref{isosax}.
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Open Scope type_scope.
Section Iso_axioms.
Variables A B C : Set.
Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; apply refl_equal.
Qed.
End Iso_axioms.
\end{coq_example*}
}}
\caption{Type isomorphism axioms}
\label{isosax}
\end{table}
The tactic to judge equalities modulo this axiomatization can be written as
shown in tables~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
simple. Types are reduced using axioms that can be oriented (this done by {\tt
MainSimplif}). The normal forms are sequences of Cartesian
products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components (this is done by {\tt
CompareStruct}). The main tactic to be called and realizing this algorithm is
{\tt IsoProve}.
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example}
Ltac DSimplif trm :=
match trm with
| (?A * ?B * ?C) =>
rewrite <- (Ass A B C); try MainSimplif
| (?A * ?B -> ?C) =>
rewrite (Cur A B C); try MainSimplif
| (?A -> ?B * ?C) =>
rewrite (Dis A B C); try MainSimplif
| (?A * unit) =>
rewrite (P_unit A); try MainSimplif
| (unit * ?B) =>
rewrite (Com unit B); try MainSimplif
| (?A -> unit) =>
rewrite (AR_unit A); try MainSimplif
| (unit -> ?B) =>
rewrite (AL_unit B); try MainSimplif
| (?A * ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
| (?A -> ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
end
with MainSimplif :=
match goal with
| |- (?A = ?B) => try DSimplif A; try DSimplif B
end.
Ltac Length trm :=
match trm with
| (_ * ?B) => let succ := Length B in constr:(S succ)
| _ => constr:1
end.
Ltac assoc := repeat rewrite <- Ass.
\end{coq_example}
}}
\caption{Type isomorphism tactic (1)}
\label{isosltac1}
\end{table}
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example}
Ltac DoCompare n :=
match goal with
| [ |- (?A = ?A) ] => apply refl_equal
| [ |- (?A * ?B = ?A * ?C) ] =>
apply Cons; let newn := Length B in
DoCompare newn
| [ |- (?A * ?B = ?C) ] =>
match eval compute in n with
| 1 => fail
| _ =>
pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
end
end.
Ltac CompareStruct :=
match goal with
| [ |- (?A = ?B) ] =>
let l1 := Length A
with l2 := Length B in
match eval compute in (l1 = l2) with
| (?n = ?n) => DoCompare n
end
end.
Ltac IsoProve := MainSimplif; CompareStruct.
\end{coq_example}
}}
\caption{Type isomorphism tactic (2)}
\label{isosltac2}
\end{table}
Table~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}.
\begin{table}[ht]
\noindent{}\framebox[6.4in][l]
{\parbox{6.4in}
{
\begin{coq_example*}
Lemma isos_ex1 :
forall A B:Set, A * unit * B = B * (unit * A).
Proof.
intros; IsoProve.
Qed.
Lemma isos_ex2 :
forall A B C:Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).
Proof.
intros; IsoProve.
Qed.
\end{coq_example*}
}}
\caption{Type equalities solved by {\tt IsoProve}}
\label{isoslem}
\end{table}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|