aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/RefMan-tacex.tex
blob: e41c76ff4be227ed222eb053f6096b31dddac05a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
\chapter{Detailed examples of tactics}
\label{Tactics-examples}

This chapter presents detailed examples of certain tactics, to
illustrate their behavior.

\section{\tt Refine}
\tacindex{Refine}
\label{Refine-example}

This tactic applies to any goal. It behaves like {\tt Exact} with a
big difference : the user can leave some holes (denoted by \texttt{?} or 
{\tt (?::}{\it type}{\tt )}) in the term. 
{\tt Refine} will generate as many
subgoals as they are holes in the term. The type of holes must be
either synthesized by the system or declared by an
explicit cast like \verb|(?::nat->Prop)|. This low-level
tactic can be useful to advanced users.

\firstexample
\example{}

\begin{coq_example*}
Require Refine.
Inductive Option: Set := Fail : Option | Ok : bool->Option.
\end{coq_example}
\begin{coq_example}
Definition get: (x:Option)~x=Fail->bool.
Refine
  [x:Option]<[x:Option]~x=Fail->bool>Cases x of
        Fail   =>  ?
      | (Ok b) =>  [_:?]b end.
Intros;Absurd Fail=Fail;Trivial.
\end{coq_example}
\begin{coq_example*}
Defined.
\end{coq_example*}

\example{Using Refine to build a poor-man's ``Cases'' tactic}
\texttt{Refine} is actually the only way for the user to do
a proof with the same structure as a {\tt Cases} definition. Actually,
the tactics \texttt{Case} (see \ref{Case}) and \texttt{Elim} (see
\ref{Elim}) only allow one step of elementary induction. 

\begin{coq_example*}
Require Bool.
Require Arith.
\end{coq_example*}
%\begin{coq_eval}
%Abort.
%\end{coq_eval}
\begin{coq_example}
Definition one_two_or_five := [x:nat]
  Cases x of
    (1) => true
  | (2) => true
  | (5) => true
  | _ => false
  end.
Goal (x:nat)(Is_true (one_two_or_five x)) -> x=(1)\/x=(2)\/x=(5).
\end{coq_example}

A traditional script would be the following:

\begin{coq_example*}
Destruct x.
Tauto.
Destruct n.
Auto.
Destruct n0.
Auto.
Destruct n1.
Tauto.
Destruct n2.
Tauto.
Destruct n3.
Auto.
Intros; Inversion H.
\end{coq_example*}

With the tactic \texttt{Refine}, it becomes quite shorter:

\begin{coq_example*}
Restart.
Require Refine.
\end{coq_example*}
\begin{coq_example}
Refine [x:nat]
  <[y:nat](Is_true (one_two_or_five y))->(y=(1)\/y=(2)\/y=(5))>
  Cases x of
    (1) => [H]?
  | (2) => [H]?
  | (5) => [H]?
  | _ => [H](False_ind ? H)
  end; Auto.
\end{coq_example}
\begin{coq_eval}
Abort.
\end{coq_eval}

\section{\tt EApply}
\tacindex{EApply}
\label{EApply-example}
\Example
Assume we have a relation on {\tt nat} which is transitive:

\begin{coq_example*}
Variable R:nat->nat->Prop.
Hypothesis Rtrans : (x,y,z:nat)(R x y)->(R y z)->(R x z).
Variables n,m,p:nat.
Hypothesis Rnm:(R n m).
Hypothesis Rmp:(R m p).
\end{coq_example*}

Consider the goal {\tt (R n p)} provable using the transitivity of
{\tt R}:

\begin{coq_example*}
Goal (R n p).
\end{coq_example*}

The direct application of {\tt Rtrans} with {\tt Apply} fails because
no value for {\tt y} in {\tt Rtrans} is found by {\tt Apply}:

\begin{coq_example}
Apply Rtrans.
\end{coq_example}

A solution is to rather apply {\tt (Rtrans n m p)}.

\begin{coq_example}
Apply (Rtrans n m p).
\end{coq_example}

\begin{coq_eval}
  Undo.
\end{coq_eval}

More elegantly, {\tt Apply Rtrans with y:=m} allows to only mention
the unknown {\tt m}:

\begin{coq_example}
Apply Rtrans with y:=m.
\end{coq_example}

\begin{coq_eval}
  Undo.
\end{coq_eval}

Another solution is to mention the proof of {\tt (R x y)} in {\tt
Rtrans}...

\begin{coq_example}
Apply Rtrans with 1:=Rnm.
\end{coq_example}

\begin{coq_eval}
  Undo.
\end{coq_eval}

... or the proof of {\tt (R y z)}:

\begin{coq_example}
Apply Rtrans with 2:=Rmp.
\end{coq_example}

\begin{coq_eval}
  Undo.
\end{coq_eval}

On the opposite, one can use {\tt EApply} which postpone the problem
of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt
Rmp}. This instantiates the existential variable and completes the proof.

\begin{coq_example}
EApply Rtrans.
Apply Rnm.
Apply Rmp.
\end{coq_example}

\begin{coq_eval}
  Reset R.
\end{coq_eval}

\section{{\tt Scheme}}
\comindex{Scheme}
\label{Scheme-examples}

\firstexample
\example{Induction scheme for \texttt{tree} and \texttt{forest}}

The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:

\begin{coq_eval}
Restore State Initial.
Variables A,B:Set.
Mutual Inductive tree : Set :=  node : A -> forest -> tree
with forest : Set := leaf : B -> forest 
                   | cons : tree -> forest -> forest.
\end{coq_eval}

\begin{coq_example*}
Scheme tree_forest_rec := Induction for tree Sort Set 
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}

You may now look at the type of {\tt tree\_forest\_rec}:

\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}

This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.

The principle {\tt tree\_forest\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.

\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}

\example{Predicates {\tt odd} and {\tt even} on naturals}

Let {\tt odd} and {\tt even} be inductively defined as:

\begin{coq_eval}
Restore State Initial.
\end{coq_eval}

\begin{coq_example*}
Mutual Inductive odd : nat->Prop := 
    oddS : (n:nat)(even n)->(odd (S n))
with even : nat -> Prop := 
    evenO : (even O) 
  | evenS : (n:nat)(odd n)->(even (S n)).  
\end{coq_example*}

The following command generates a powerful elimination
principle:

\begin{coq_example*}
Scheme odd_even := Minimality for odd Sort Prop
with   even_odd := Minimality for even Sort Prop.
\end{coq_example*}

The type of {\tt odd\_even} for instance will be:

\begin{coq_example}
Check odd_even.
\end{coq_example}

The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.


\section{{\tt Inversion}}
\tacindex{Inversion}
\label{Inversion-examples}

\subsection*{Generalities about inversion}

When working with (co)inductive predicates, we are very often faced to
some of these situations:
\begin{itemize}
\item we have an inconsistent instance of an inductive predicate in the
  local context of hypotheses. Thus, the current goal can be trivially
  proved by absurdity. 
\item we have a hypothesis that is an instance of an inductive
  predicate, and the instance has some variables whose constraints we
  would like to derive.
\end{itemize}

The inversion tactics are very useful to simplify the work in these
cases. Inversion tools can be classified in three groups:

\begin{enumerate}
\item tactics for inverting an instance without stocking the inversion
  lemma in the context; this includes the tactics
  (\texttt{Dependent})  \texttt{Inversion} and
 (\texttt{Dependent}) \texttt{Inversion\_clear}.
\item commands for generating and stocking in the context the inversion
  lemma corresponding to an instance; this includes \texttt{Derive}
  (\texttt{Dependent}) \texttt{Inversion} and \texttt{Derive}
  (\texttt{Dependent}) \texttt{Inversion\_clear}.
\item tactics for inverting an instance using an already defined
  inversion lemma; this includes the tactic \texttt{Inversion \ldots using}.
\end{enumerate}

As inversion proofs may be large in size, we recommend the user to
stock the lemmas whenever the same instance needs to be inverted
several times.

\firstexample
\example{Non-dependent inversion}

Let's consider the relation \texttt{Le} over natural numbers and the
following variables:

\begin{coq_eval}
Restore State Initial.
\end{coq_eval}

\begin{coq_example*}
Inductive Le : nat->nat->Set :=
  LeO : (n:nat)(Le O n)  |  LeS : (n,m:nat) (Le n m)-> (Le (S n) (S m)).
Variable P:nat->nat->Prop.
Variable Q:(n,m:nat)(Le n m)->Prop.
\end{coq_example*}

For example, consider the goal:

\begin{coq_eval}
Lemma ex : (n,m:nat)(Le (S n) m)->(P n m).
Intros.
\end{coq_eval}

\begin{coq_example}
Show.
\end{coq_example}

To prove the goal we may need to reason by cases on \texttt{H} and to 
 derive that \texttt{m}  is necessarily of
the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.  
Deriving these conditions corresponds to prove that the
only possible constructor of \texttt{(Le (S n) m)}  is
\texttt{LeS} and that we can invert the 
\texttt{->} in the type  of \texttt{LeS}.  
This inversion is possible because \texttt{Le} is the smallest set closed by
the constructors \texttt{LeO} and \texttt{LeS}.

\begin{coq_example}
Inversion_clear  H.
\end{coq_example}

Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
and that the hypothesis \texttt{(Le n m0)} has been added to the
context.

Sometimes it is
interesting to have the equality \texttt{m=(S m0)} in the
context to use it after. In that case we can use  \texttt{Inversion} that
does not clear the equalities:

\begin{coq_example*}
Undo.
\end{coq_example*}

\begin{coq_example}
Inversion H.
\end{coq_example}

\begin{coq_eval}
Undo.
\end{coq_eval}

\example{Dependent Inversion}

Let us consider the following goal:

\begin{coq_eval}
Lemma ex_dep : (n,m:nat)(H:(Le (S n) m))(Q (S n) m H).
Intros.
\end{coq_eval}

\begin{coq_example}
Show.
\end{coq_example}

As \texttt{H} occurs in the goal, we may want to reason by cases on its
structure and so, we would like  inversion tactics to
substitute \texttt{H} by the corresponding term in constructor form. 
Neither \texttt{Inversion} nor  {\tt Inversion\_clear} make such a
substitution. 
To have such a behavior we use the dependent inversion tactics:

\begin{coq_example}
Dependent Inversion_clear H.
\end{coq_example}

Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
\texttt{m} by \texttt{(S m0)}.

\example{using already defined inversion  lemmas}

\begin{coq_eval}
Abort.
\end{coq_eval}

For example, to generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:

\begin{coq_example*}
Derive Inversion_clear leminv with (n,m:nat)(Le (S n) m) Sort Prop.
\end{coq_example*}

\begin{coq_example}
Check leminv.
\end{coq_example}

Then we can use the proven inversion lemma:

\begin{coq_example}
Show.
\end{coq_example}

\begin{coq_example}
Inversion H using leminv.
\end{coq_example}

\begin{coq_eval}
Reset Initial.
\end{coq_eval}

\section{\tt AutoRewrite}
\label{AutoRewrite-example}

\Example
Here is a basic use of {\tt AutoRewrite} with the Ackermann function:

\begin{coq_example*}
Require Arith.

Variable Ack:nat->nat->nat.

Axiom Ack0:(m:nat)(Ack (0) m)=(S m).
Axiom Ack1:(n:nat)(Ack (S n) (0))=(Ack n (1)).
Axiom Ack2:(n,m:nat)(Ack (S n) (S m))=(Ack n (Ack (S n) m)).
\end{coq_example*}

\begin{coq_example}
HintRewrite base0 [ Ack0 LR 
                Ack1 LR
                Ack2 LR].

Lemma ResAck0:(Ack (2) (1))=(5).
AutoRewrite [base0] Step=[Reflexivity].
\end{coq_example}

\begin{coq_eval}
Reset Initial.  
\end{coq_eval}

\Example
The Mac Carthy function shows a more complex case:

\begin{coq_example*}
Require Omega.

Variable g:nat->nat->nat.

Axiom g0:(m:nat)(g (0) m)=m.
Axiom g1:
  (n,m:nat)(gt n (0))->(gt m (100))->
  (g n m)=(g (pred n) (minus m (10))).
Axiom g2:
  (n,m:nat)(gt n (0))->(le m (100))->(g n m)=(g (S n) (plus m (11))).
\end{coq_example*}

\begin{coq_example}
HintRewrite base1 [ g0 LR g1 LR].
HintRewrite base2 [g2 LR].

Lemma Resg0:(g (1) (90))=(91).
AutoRewrite [base1 base2] 
  Step=[Simpl|Reflexivity] with All
  Rest=[Omega] with Cond 
  Depth=10.
\end{coq_example}
\begin{coq_eval}
Abort.
\end{coq_eval}

\begin{coq_eval}
Lemma maccarthy_90 : 
  (g0:(m:nat)(g (0) m)=m)
  (g1:(n,m:nat)(gt n (0))->(gt m (100))-> (g n m)=(g (pred n) (minus m (10))))
  (g2:(n,m:nat)(gt n (0))->(le m (100))->(g n m)=(g (S n) (plus m (11))))
  (g (1) (90))=(91).
  Intros.
\end{coq_eval}

One can also give the full base definition instead of a name. This is
useful to do rewritings with the hypotheses of current goal:

\begin{coq_example}
  Show.
  AutoRewrite [[g0 LR g1 LR] [g2 LR]] 
  Step=[Simpl|Reflexivity] with All
  Rest=[Omega] with Cond 
  Depth=10.
\end{coq_example}

\begin{coq_eval}
Abort.
\end{coq_eval}

\section{\tt Quote}
\tacindex{Quote}
\label{Quote-examples}

The tactic \texttt{Quote} allows to use Barendregt's so-called
2-level approach without writing any ML code. Suppose you have a
language \texttt{L} of 
'abstract terms' and a type \texttt{A} of 'concrete terms' 
and a function \texttt{f : L -> A}. If \texttt{L} is a simple
inductive datatype and \texttt{f} a simple fixpoint, \texttt{Quote f}
will replace the head of current goal a convertible term with the form 
\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A
  -> L}. 

Here is an example:

\begin{coq_example}
Require Quote.
Parameters A,B,C:Prop.
Inductive Type formula :=
| f_and : formula -> formula -> formula (* binary constructor *)
| f_or : formula -> formula -> formula  
| f_not : formula -> formula            (* unary constructor *)
| f_true : formula                      (* 0-ary constructor *)
| f_const : Prop -> formula.            (* contructor for constants *)

Fixpoint interp_f [f:formula] : Prop := 
  Cases f of
  | (f_and f1 f2) => (interp_f f1)/\(interp_f f2)
  | (f_or f1 f2) => (interp_f f1)\/(interp_f f2)
  | (f_not f1) => ~(interp_f f1)
  | f_true => True
  | (f_const c) => c
  end.

Goal A/\(A\/True)/\~B/\(A <-> A).
Quote interp_f.
\end{coq_example}

The algorithm to perform this inversion is: try to match the
term with right-hand sides expression of \texttt{f}. If there is a
match, apply the corresponding left-hand side and call yourself
recursively on sub-terms. If there is no match, we are at a leaf:
return the corresponding constructor (here \texttt{f\_const}) applied
to the term. 

\begin{ErrMsgs}
\item \errindex{Quote: not a simple fixpoint}
  Happens when \texttt{Quote} is not able to perform inversion properly.
\end{ErrMsgs}

\subsection{Introducing variables map}

The normal use of \texttt{Quote} is to make proofs by reflection: one
defines a function \texttt{simplify : formula -> formula} and proves a 
theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) ->
  (interp\_f f)}. Then, one can simplify formulas by doing:

\begin{quotation}
\begin{verbatim}
   Quote interp_f.
   Apply simplify_ok.
   Compute.
\end{verbatim}
\end{quotation}

But there is a problem with leafs: in the example above one cannot
write a function that implements, for example, the logical simplifications 
$A \wedge A \ra A$ or $A \wedge \neg A \ra \texttt{False}$. This is
because the \Prop{} is impredicative.

It is better to use that type of formulas:

\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example}
Inductive Set formula :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula  
| f_not : formula -> formula           
| f_true : formula                     
| f_atom : index -> formula.            (* contructor for variables *)
\end{coq_example*}

\texttt{index} is defined in module \texttt{Quote}. Equality on that
type is decidable so we are able to simplify $A \wedge A$ into $A$ at
the abstract level. 

When there are variables, there are bindings, and \texttt{Quote}
provides also a type \texttt{(varmap A)} of bindings from
\texttt{index} to any set \texttt{A}, and a function
\texttt{varmap\_find} to search in such maps. The interpretation
function has now another argument, a variables map:

\begin{coq_example}
 Fixpoint interp_f [vm:(varmap Prop); f:formula] : Prop := 
  Cases f of
  | (f_and f1 f2) => (interp_f vm f1)/\(interp_f vm f2)
  | (f_or f1 f2) => (interp_f vm f1)\/(interp_f vm f2)
  | (f_not f1) => ~(interp_f vm f1)
  | f_true => True
  | (f_atom i) => (varmap_find True i vm)
  end.
\end{coq_example}

\noindent\texttt{Quote} handles this second case properly:

\begin{coq_example}
Goal A/\(B\/A)/\(A\/~B).
Quote interp_f.
\end{coq_example}

It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is
convertible with the conclusion of current goal.

\subsection{Combining variables and constants}

One can have both variables and constants in abstracts terms; that is
the case, for example, for the \texttt{Ring} tactic (chapter
\ref{Ring}). Then one must provide to Quote a list of
\emph{constructors of constants}. For example, if the list is
\texttt{[O S]} then closed natural numbers will be considered as
constants and other terms as variables. 

Example: 

\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example*}
Inductive Type formula :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_const : Prop -> formula             (* constructor for constants *)
| f_atom : index -> formula.            (* constructor for variables *)

Fixpoint interp_f [vm:(varmap Prop); f:formula] : Prop := 
  Cases f of
  | (f_and f1 f2) => (interp_f vm f1)/\(interp_f vm f2)
  | (f_or f1 f2) => (interp_f vm f1)\/(interp_f vm f2)
  | (f_not f1) => ~(interp_f vm f1)
  | f_true => True
  | (f_const c) => c
  | (f_atom i) => (varmap_find True i vm)
  end.

Goal A/\(A\/True)/\~B/\(C<->C).
\end{coq_example*}

\begin{coq_example}
Quote interp_f [A B]. 
Undo. Quote interp_f [B C iff]. 
\end{coq_example}

\Warning  This tactic is new and experimental. Since function inversion
is undecidable in general case, don't expect miracles from it !

\SeeAlso file \texttt{theories/DEMOS/DemoQuote.v}
\SeeAlso comments of source file \texttt{tactics/contrib/polynom/quote.ml}
\SeeAlso the tactic \texttt{Ring} (chapter \ref{Ring})


%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End: