1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
\chapter{The tactic language}
\label{TacticLanguage}
% Très très provisoire
% À articuler notamment avec le chapitre "Tactiques utilisateurs"
%\geometry{a4paper,body={5in,8in}}
This chapter gives a compact documentation of the tactic language available in
the toplevel of {\Coq}. We start by giving the syntax and, next, we present the
informal semantic. Finally, we show some examples which deal with small but
also with non-trivial problems. If you want to know more regarding this
language and especially about its fundations, you can refer to~\cite{Del00}.
\section{Syntax}
\def\tacexpr{\textrm{\textsl{expr}}}
\def\tacexprinf{\textrm{\textsl{tacexpr$_i$}}}
\def\tacexprpref{\textrm{\textsl{tacexpr$_p$}}}
\def\atom{\textrm{\textsl{atom}}}
\def\inputfun{\textrm{\textsl{input\_fun}}}
\def\recclause{\textrm{\textsl{rec\_clause}}}
\def\letclause{\textrm{\textsl{let\_clause}}}
\def\matchrule{\textrm{\textsl{match\_rule}}}
\def\contextrule{\textrm{\textsl{context\_rule}}}
\def\contexthyps{\textrm{\textsl{context\_hyps}}}
\def\primitivetactic{\textrm{\textsl{primitive\_tactic}}}
\def\tacarg{\textrm{\textsl{arg}}}
The syntax of the tactic language is given in table~\ref{ltac}.
% We use a \bn{}-like notation.
Terminal symbols are set in
%sans serif font ({\sf like this}).
typewriter font ({\tt like this}).
Non-terminal symbols are set in italic font ($like\sm{}that$). ... {\it
|} ... denotes the or operation. \nelist{$entry$}{} denotes one or several
repetitions of entry $entry$. \nelist{$entry$}{$sep$} denotes one or several repetitions separated by $sep$.
%Parentheses {\it (}...{\it )} denote grouping.
The main entry is {\tacexpr} and the entries {\naturalnumber}, {\integer},
{\ident}, {\qualid}, {\term}, {\pattern} and {\primitivetactic} represent respectively the natural and integer
numbers, the authorized identificators and qualified names, {\Coq}'s terms and patterns and all the basic
tactics. In {\pattern}, there can be specific variables like {\tt ?n} where {\tt n}
is a {\naturalnumber} or {\tt ?}, which are metavariables for pattern matching. {\tt ?n}
allows us to keep instantiations and to make constraints whereas {\tt ?} shows
that we are not interested in what will be matched.
This language is used in proof mode but it can also be used in toplevel
definitions as shown in table~\ref{ltactop}.
\begin{table}[htbp]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{\begin{center}
\begin{tabular}{lp{0.1in}l}
{\tacexpr} & \cn{}::= & {\tacexpr} {\tt ;} {\tacexpr}\\
& \cn{}| & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\
& \cn{}| & {\tacexprpref}\\
\\
{\tacexprpref} & \cn{}::= & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
& \cn{}| & {\tt Repeat} {\tacexprpref}\\
& \cn{}| & {\tt Try} {\tacexprpref}\\
& \cn{}| & {\tt Progress} {\tacexprpref}\\
& \cn{}| & {\tt Info} {\tacexprpref}\\
& \cn{}| & {\tacexprinf} \\
\\
{\tacexprinf} & \cn{}::= & {\atom} {\tt Orelse} {\tacexprpref}\\
& \cn{}| & {\atom}\\
\\
{\atom} & \cn{}::= & {\tt Fun} \nelist{\ident}{} {\tt ->} {\tacexpr}\\
& \cn{}| &
{\tt Let} \nelist{\letclause}{\tt And} {\tt In}
{\tacexpr}\\
% & \cn{}| & {\tt Rec} {\recclause}\\
& \cn{}| &
{\tt Rec} \nelist{\recclause}{\tt And} {\tt In}
{\tacexpr}\\
& \cn{}| &
{\tt Match Context With} \nelist{\contextrule}{\tt |}\\
& \cn{}| &
{\tt Match} {\term} {\tt With} \nelist{\matchrule}{\tt |}\\
& \cn{}| & {\tt (} {\tacexpr} {\tt )}\\
& \cn{}| & {\tt (} {\qualid} \nelist{\tacarg}{} {\tt )}\\
& \cn{}| & {\tt First [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& \cn{}| & {\tt Solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& \cn{}| & {\tt Idtac}\\
& \cn{}| & {\tt Fail} ~|~ {\tt Fail} {\naturalnumber}\\
& \cn{}| & \primitivetactic\\
& \cn{}| & \tacarg\\
\\
%{\inputfun} & \cn{}::= & {\ident}\\
%& \cn{}| & {\tt ()}\\
%\\
\letclause & \cn{}::= & {\ident} {\tt =} {\tacarg}\\
\\
\recclause & \cn{}::= & {\ident} \nelist{\ident}{} {\tt ->} {\tacexpr}\\
\\
\contextrule & \cn{}::= &
{\tt [} \nelist{\contexthyps}{\tt ;} {\tt |-}
{\pattern} {\tt ] ->} {\tacexpr}\\
& \cn{}| & {\tt [ |-} {\pattern} {\tt ] ->} {\tacexpr}\\
& \cn{}| & {\tt \_ ->} {\tacexpr}\\
\\
\contexthyps & \cn{}::= & {\ident} {\tt :} {\pattern}\\
& \cn{}| & {\tt \_ :} {\pattern}\\
\\
\matchrule & \cn{}::= & {\tt [} {\pattern} {\tt ] ->} {\tacexpr}\\
& \cn{}| & {\tt \_ ->} {\tacexpr}\\
\\
\tacarg
%& \cn{}::= & {\tt ()}\\
& \cn{}| & {integer}\\
& \cn{}| & {\ident}\\
& \cn{}| & {\tt '}{\term}\\
& \cn{}| & {\tacexpr}\\
\end{tabular}
\end{center}}}
\caption{Syntax of the tactic language}
\label{ltac}
\end{table}
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{\begin{center}
\begin{tabular}{lp{0.1in}l}
$top$ & \cn{}::= & {\tt Tactic Definition} {\ident} \nelist{\ident}{} {\tt :=}
{\tacexpr} \\
& \cn{}| & {\tt Recursive Tactic Definition} \nelist{$trec\_clause$}{\tt
And}\\
\\
$trec\_clause$ & \cn{}::= & {\ident} \nelist{\ident}{} {\tt :=} {\tacexpr}
\end{tabular}
\end{center}}}
\caption{Tactic toplevel definitions}
\label{ltactop}
\end{table}
\section{Semantics}
Tactic expressions can only be applied in the context of a goal. The
evaluation yields either a term, an integer or a tactic. Intermediary
results can be terms or integers but the final result must be a tactic
which is then applied to the current goal.
There is a special case for Match expressions of which the clauses
evaluate to tactics. Such expressions can only be used as end result
of a tactic expression (never as argument of a local definition or of an
application).
%% \subsection{Values}
%% Values are given by table~\ref{ltacval}. All these values are tactic values,
%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values.
%% \begin{table}[ht]
%% \noindent{}\framebox[6in][l]
%% {\parbox{6in}
%% {\begin{center}
%% \begin{tabular}{lp{0.1in}l}
%% $vexpr$ & \cn{}::= & $vexpr$ {\tt ;} $vexpr$\\
%% & \cn{}| & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt
%% ]}\\
%% & \cn{}| & $vatom$\\
%% \\
%% $vatom$ & \cn{}::= & {\tt Fun} \nelist{\inputfun}{} {\tt ->} {\tacexpr}\\
%% %& \cn{}| & {\tt Rec} \recclause\\
%% & \cn{}| &
%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In}
%% {\tacexpr}\\
%% & \cn{}| &
%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$
%% $context\_rule$\\
%% & \cn{}| & {\tt (} $vexpr$ {\tt )}\\
%% & \cn{}| & $vatom$ {\tt Orelse} $vatom$\\
%% & \cn{}| & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\
%% & \cn{}| & {\tt Repeat} $vatom$\\
%% & \cn{}| & {\tt Try} $vatom$\\
%% & \cn{}| & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & \cn{}| & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & \cn{}| & {\tt Idtac}\\
%% & \cn{}| & {\tt Fail}\\
%% & \cn{}| & {\primitivetactic}\\
%% & \cn{}| & $arg$
%% \end{tabular}
%% \end{center}}}
%% \caption{Values of ${\cal L}_{tac}$}
%% \label{ltacval}
%% \end{table}
%% \subsection{Evaluation}
\subsubsection{Local definitions}
Local definitions can be done as follows:
%\newpage{}
%\phantom{}
%\vfill{}
\begin{tabular}{l}
{\tt Let} {\ident}$_1$ {\tt =} {\tacexpr}$_1$\\
{\tt And} {\ident}$_2$ {\tt =} {\tacexpr}$_2$\\
...\\
{\tt And} {\ident}$_n$ {\tt =} {\tacexpr}$_n$ {\tt In}\\
{\tacexpr}
\end{tabular}
each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is evaluated by substituting $v_i$
to each occurrence of {\ident}$_i$, for $i=1,...,n$. There is no dependencies
between the {\tacexpr}$_i$ and the {\ident}$_i$.
\subsubsection{Pattern matching on terms}
We can carry out pattern matching on terms with:
\begin{tabular}{l}
{\tt Match} {\term} {\tt With}\\
~~~{\pattern}$_1$ {\tt ->} {\tacexpr}$_1$\\
~{\tt |} {\pattern}$_2$ {\tt ->} {\tacexpr}$_2$\\
~...\\
~{\tt |} {\pattern}$_n$ {\tt ->} {\tacexpr}$_n$\\
~{\tt |} {\tt \_} {\tt ->} {\tacexpr}$_{n+1}$
\end{tabular}
if {\term} is matched (non-linear first order unification) by {\pattern}$_1$ then
{\tacexpr}$_1$ is evaluated into some $v_1$ by substituting the pattern matching instantiations to
the metavariables. If $v_1$ is a tactic value, then it is applied to the current goal. If this application fails, then, as if the matching with {\pattern}$_1$ had failed, the clause {\pattern}$_2$ {\tt ->} {\tacexpr}$_2$ is tried and so on.
The pattern {\_} matches any term, but if the corresponding action is a tactic which fails, then the whole clause fails.
If all clauses fail then a no-matching error is raised. \\
{\tt Error message:}\\
{\tt No matching clauses for Match}
\hx{4}No pattern can be used and, in particular, there is no {\tt \_} pattern.
\subsubsection{Application}
An application is an expression of the following form:\\
{\tt (} {\qualid} {\tacexpr}$_1$ ... {\tacexpr}$_n$ {\tt )}\\
The reference {\qualid} must be bound to some defined tactic definition expecting at least $n$ arguments.
The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$.
%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by
%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive
%clauses, the bodies are lazily substituted (when an identifier to be evaluated
%is the name of a recursive clause).
%\subsection{Application of tactic values}
\subsubsection{Sequence}
A sequence is an expression of the following form:\\
{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$\\
{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and $v_2$. $v_1$ and $v_2$ must be
tactic values. $v_1$ is then applied and $v_2$ is applied to the subgoals
generated by the application of $v_1$. Sequence is left associating.
\subsubsection{General sequence}
We can generalize the previous sequence operator by:\\
{\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}\\
{\tacexpr}$_i$ is evaluated to $v_i$, for $i=0,...,n$. $v_0$ is applied and $v_i$ is
applied to the $i$-th generated subgoal by the application of $v_0$, for
$=1,...,n$. It fails if the application of $v_0$ does not generate exactly $n$
subgoals.
\subsubsection{Branching}
We can easily branch with the following structure:\\
{\tacexpr}$_1$ {\tt Orelse} {\tacexpr}$_2$\\
{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and $v_2$. $v_1$ and $v_2$ must be
tactic values. $v_1$ is applied and if it fails then $v_2$ is applied.
Branching is left associating.
\subsubsection{For loop}
We have a for loop with:\\
{\tt Do} $n$ {\tacexpr}\\
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is applied $n$
times. Supposing $n>1$, after the first application of $v$, $v$ is applied, at
least once, to the generated subgoals and so on. It fails if the application of
$v$ fails before the $n$ applications have been completed.
\subsubsection{Repeat loop}
We have a repeat loop with:\\
{\tt Repeat} {\tacexpr}\\
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is applied until it
fails. Supposing $n>1$, after the first application of $v$, $v$ is applied, at
least once, to the generated subgoals and so on. It stops when it fails for all
the generated subgoals. It never fails.
\subsubsection{Error catching}
We can catch the tactic errors with:\\
{\tt Try} {\tacexpr}\\
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is applied. If the
application of $v$ fails, it catches the error and leaves the goal unchanged.
It never fails.
\subsubsection{First tactic to work}
We may consider the first tactic to work (i.e. which does not fail) among a
panel of tactics:\\
{\tt First [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}\\
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it works, it stops else it
tries to apply $v_2$ and so on. It fails when there is no applicable tactic.\\
{\tt Error message:}\\
{\tt No applicable tactic}
\subsubsection{Solving}
We may consider the first to solve (i.e. which generates no subgoal) among a
panel of tactics:\\
{\tt Solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}\\
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it solves, it stops else it
tries to apply $v_2$ and so on. It fails if there is no solving tactic.\\
{\tt Error message:}\\
{\tt Cannot solve the goal}
\subsubsection{Identity}
We have the identity tactic:\\
{\tt Idtac}\\
It leaves the goal unchanged but it appears in the proof script.
\subsubsection{Failing}
We have the failing tactic:\\
{\tt Fail} and {\tt Fail $n$} \\
It always fails and leaves the goal unchanged. It does not appear in
the proof script and can be catched by {\tt Try}. If no number is
specified, it defaults to $0$.
{\tt Error message:}\\
{\tt Fail tactic always fails (level $n$)}.
\subsubsection{Pattern matching on proof contexts}
We can make pattern matching on proof contexts using the following
expression:
\begin{tabular}{l}
{\tt Match Context With}\\
~~~{\tt [}$context\_hyps_{1,1}${\tt ;}...{\tt ;}$context\_hyps_{1,m_1}$
~~{\tt |-}{\pattern}$_1${\tt ] ->} {\tacexpr}$_1$\\
~~{\tt |[}$context\_hyps_{2,1}${\tt ;}...{\tt ;}$context\_hyps_{2,m_2}$
~~{\tt |-}{\pattern}$_2${\tt ] ->} {\tacexpr}$_2$\\
~~...\\
~~{\tt |[}$context\_hyps_{n,1}${\tt ;}...{\tt ;}$context\_hyps_{n,m_n}$
~~{\tt |-}{\pattern}$_n${\tt ] ->} {\tacexpr}$_n$\\
~~{\tt |\_}~~~~{\tt ->} {\tacexpr}$_{n+1}$
\end{tabular}
If each hypothesis pattern $context\_hyps_{1,i}$, with $i=1,...,m_1$ is matched
(non-linear first order unification) by an hypothesis of the goal and if
{\pattern}$_1$ is matched by the conclusion of the goal, then {\tacexpr}$_1$ is evaluated
to $v_1$ by substituting the pattern matching to the metavariables and the real
hypothesis names bound to the possible hypothesis names occurring in the
hypothesis patterns. If $v_1$ is a tactic value, then it is applied to the
goal. If this application fails, then another combination of hypotheses is
tried with the same proof context pattern. If there is no other combination of
hypotheses then the second proof context pattern is tried and so on. If the
next to last proof context pattern fails then {\tacexpr}$_{n+1}$ is evaluated to
$v_{n+1}$ and $v_{n+1}$ is applied.\\
{\tt Error message:}\\
{\tt No matching clauses for Match Context}
\hx{4}No proof context pattern can be used and, in particular, there is no {\tt
\_} proof
\hx{4}context pattern.
\subsection{Tactic toplevel definitions}
Basically, tactics toplevel definitions are made as follows:\\
%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\
%
%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every
%script is evaluated by substituting $v$ to {\ident}.
%
%We can define functional definitions by:\\
{\tt Tactic Definition} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=}
{\tacexpr}\\
\noindent This defines a new tactic that can be used in any tactic script or new tactic toplevel definition.
\Rem The preceding definition can equivalently be written:\\
{\tt Tactic Definition} {\ident} {\tt := Fun} {\ident}$_1$ ... {\ident}$_n$
{\tt ->} {\tacexpr}\\
\noindent Recursive and mutual recursive function definitions are also possible with the syntax:
\medskip
\begin{tabular}{l}
{\tt Recursive Tactic Definition} {\ident}$_1$ {\ident}$_{1,1}$ ...
{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\
{\tt And} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=}
{\tacexpr}$_2$\\
...\\
{\tt And} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=}
{\tacexpr}$_n$
\end{tabular}
%This definition bloc is a set of definitions (use of
%the same previous syntactical sugar) and the other scripts are evaluated as
%usual except that the substitutions are lazily carried out (when an identifier
%to be evaluated is the name of a recursive definition).
\section{Examples}
\subsection{About the cardinality of the natural number set}
A first example which shows how to use the pattern matching over the proof
contexts is the proof that natural numbers have more than two elements. The
proof of such a lemma can be done as shown in table~\ref{cnatltac}.
\begin{coq_eval}
Reset Initial.
Require Arith.
Require PolyList.
Require PolyListSyntax.
\end{coq_eval}
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example*}
Lemma card_nat: ~(EX x:nat|(EX y:nat|(z:nat)(x=z)/\(y=z))).
Proof.
Red;Intro H.
Elim H;Intros a Ha.
Elim Ha;Intros b Hb.
Elim (Hb (0));Elim (Hb (1));Elim (Hb (2));Intros;
Match Context With
[_:?1=?2;_:?1=?3|-?] ->
Cut ?2=?3;[Discriminate|Apply trans_equal with ?1;Auto].
Qed.
\end{coq_example*}
}}
\caption{A proof on cardinality of natural numbers}
\label{cnatltac}
\end{table}
We can notice that all the (very similar) cases coming from the three
eliminations (with three distinct natural numbers) are successfully solved by
a {\tt Match Context} structure and, in particular, with only one pattern (use
of non-linear unification).
\subsection{Permutation on closed lists}
Another more complex example is the problem of permutation on closed lists. The
aim is to show that a closed list is a permutation of another one.
First, we define the permutation predicate as shown in table~\ref{permutpred}.
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example*}
Section Sort.
Variable A:Set.
Inductive permut:(list A)->(list A)->Prop:=
permut_refl:(l:(list A))(permut l l)
|permut_cons:
(a:A)(l0,l1:(list A))(permut l0 l1)->
(permut (cons a l0) (cons a l1))
|permut_append:
(a:A)(l:(list A))(permut (cons a l) (l^(cons a (nil A))))
|permut_trans:
(l0,l1,l2:(list A))(permut l0 l1)->(permut l1 l2)->
(permut l0 l2).
End Sort.
\end{coq_example*}
}}
\caption{Definition of the permutation predicate}
\label{permutpred}
\end{table}
Next, we can write naturally the tactic and the result can be seen in
table~\ref{permutltac}. We can notice that we use two toplevel definitions {\tt
PermutProve} and {\tt Permut}. The function to be called is {\tt PermutProve}
which computes the lengths of the two lists and calls {\tt Permut} with the
length if the two lists have the same length. {\tt Permut} works as expected.
If the two lists are equal, it concludes. Otherwise, if the lists have
identical first elements, it applies {\tt Permut} on the tail of the lists.
Finally, if the lists have different first elements, it puts the first element
of one of the lists (here the second one which appears in the {\tt permut}
predicate) at the end if that is possible, i.e., if the new first element has
been at this place previously. To verify that all rotations have been done for
a list, we use the length of the list as an argument for {\tt Permut} and this
length is decremented for each rotation down to, but not including, 1 because
for a list of length $n$, we can make exactly $n-1$ rotations to generate at
most $n$ distinct lists. Here, it must be noticed that we use the natural
numbers of {\Coq} for the rotation counter. In table~\ref{ltac}, we can see
that it is possible to use usual natural numbers but they are only used as
arguments for primitive tactics and they cannot be handled, in particular, we
cannot make computations with them. So, a natural choice is to use {\Coq} data
structures so that {\Coq} makes the computations (reductions) by {\tt Eval
Compute in} and we can get the terms back by {\tt Match}.
\begin{table}[p]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example}
Tactic Definition Permut n:=
Match Context With
[|-(permut ? ?1 ?1)] -> Apply permut_refl
|[|-(permut ? (cons ?1 ?2) (cons ?1 ?3))] ->
Let newn=Eval Compute in (length ?2) In
Apply permut_cons;(Permut newn)
|[|-(permut ?1 (cons ?2 ?3) ?4)] ->
(Match Eval Compute in n With
[(1)] -> Fail
|_ ->
Let l0'='(?3^(cons ?2 (nil ?1))) In
Apply (permut_trans ?1 (cons ?2 ?3) l0' ?4);
[Apply permut_append|
Compute;(Permut '(pred n))]).
Tactic Definition PermutProve:=
Match Context With
[|-(permut ? ?1 ?2)] ->
(Match Eval Compute in ((length ?1)=(length ?2)) With
[?1=?1] -> (Permut ?1)).
\end{coq_example}
}}
\caption{Permutation tactic}
\label{permutltac}
\end{table}
With {\tt PermutProve}, we can now prove lemmas such those shown in
table~\ref{permutlem}.
\begin{table}[p]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example*}
Lemma permut_ex1:
(permut nat (cons (1) (cons (2) (cons (3) (nil nat))))
(cons (3) (cons (2) (cons (1) (nil nat))))).
Proof.
PermutProve.
Save.
Lemma permut_ex2:
(permut nat
(cons (0) (cons (1) (cons (2) (cons (3) (cons (4) (cons (5)
(cons (6) (cons (7) (cons (8) (cons (9) (nil nat)))))))))))
(cons (0) (cons (2) (cons (4) (cons (6) (cons (8) (cons (9)
(cons (7) (cons (5) (cons (3) (cons (1) (nil nat)))))))))))).
Proof.
PermutProve.
Save.
\end{coq_example*}
}}
\caption{Examples of {\tt PermutProve} use}
\label{permutlem}
\end{table}
\subsection{Deciding intuitionistic propositional logic}
The pattern matching on proof contexts allows a complete and so a powerful
backtracking when returning tactic values. An interesting application is the
problem of deciding intuitionistic propositional logic. Considering the
contraction-free sequent calculi {\tt LJT*} of Roy~Dyckhoff (\cite{Dyc92}), it
is quite natural to code such a tactic using the tactic language as shown in
table~\ref{tautoltac}. The tactic {\tt Axioms} tries to conclude using usual
axioms. The tactic {\tt DSimplif} applies all the reversible rules of Dyckhoff's
system. Finally, the tactic {\tt TautoProp} (the main tactic to be called)
simplifies with {\tt DSimplif}, tries to conclude with {\tt Axioms} and tries
several paths using the backtracking rules (one of the four Dyckhoff's rules
for the left implication to get rid of the contraction and the right or).
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example}
Tactic Definition Axioms:=
Match Context With
[|-True] -> Trivial
|[_:False|- ?] -> ElimType False;Assumption
|[_:?1|-?1] -> Auto.
Tactic Definition DSimplif:=
Repeat
(Intros;
(Match Context With
[id:~?|-?] -> Red in id
|[id:?/\?|-?] -> Elim id;Do 2 Intro;Clear id
|[id:?\/?|-?] -> Elim id;Intro;Clear id
|[id:?1/\?2->?3|-?] ->
Cut ?1->?2->?3;[Intro|Intros;Apply id;Split;Assumption]
|[id:?1\/?2->?3|-?] ->
Cut ?2->?3;[Cut ?1->?3;[Intros|
Intro;Apply id;Left;Assumption]|
Intro;Apply id;Right;Assumption]
|[id0:?1->?2;id1:?1|-?] ->
Cut ?2;[Intro;Clear id0|Apply id0;Assumption]
|[|-?/\?] -> Split
|[|-~?] -> Red)).
Recursive Tactic Definition TautoProp:=
DSimplif;
Axioms
Orelse
Match Context With
[id:(?1->?2)->?3|-?] ->
Cut ?2->?3;[Intro;Cut ?1->?2;[Intro;Cut ?3;[Intro;Clear id|
Apply id;Assumption]|Clear id]|
Intro;Apply id;Intro;Assumption];TautoProp
|[id:~?1->?2|-?]->
Cut False->?2;
[Intro;Cut ?1->False;[Intro;Cut ?2;[Intro;Clear id|
Apply id;Assumption]|Clear id]|
Intro;Apply id;Red;Intro;Assumption];TautoProp
|[|-?\/?] ->
(Left;TautoProp) Orelse (Right;TautoProp).
\end{coq_example}
}}
\caption{Deciding intuitionistic propositions}
\label{tautoltac}
\end{table}
For example, with {\tt TautoProp}, we can prove tautologies like those in
table~\ref{tautolem}.
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example*}
Lemma tauto_ex1:(A,B:Prop)A/\B->A\/B.
Proof.
TautoProp.
Save.
Lemma tauto_ex2:(A,B:Prop)(~~B->B)->(A->B)->~~A->B.
Proof.
TautoProp.
Save.
\end{coq_example*}
}}
\caption{Proofs of tautologies with {\tt TautoProp}}
\label{tautolem}
\end{table}
\subsection{Deciding type isomorphisms}
A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
table~\ref{isosax}.
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_eval}
Reset Initial.
Require Arith.
\end{coq_eval}
\begin{coq_example*}
Section Iso_axioms.
Variable A,B,C:Set.
Axiom Com:(A*B)==(B*A).
Axiom Ass:(A*(B*C))==((A*B)*C).
Axiom Cur:((A*B)->C)==(A->B->C).
Axiom Dis:(A->(B*C))==((A->B)*(A->C)).
Axiom P_unit:(A*unit)==A.
Axiom AR_unit:(A->unit)==unit.
Axiom AL_unit:(unit->A)==A.
Lemma Cons:B==C->(A*B)==(A*C).
Proof.
Intro Heq;Rewrite Heq;Apply refl_eqT.
Save.
End Iso_axioms.
\end{coq_example*}
}}
\caption{Type isomorphism axioms}
\label{isosax}
\end{table}
The tactic to judge equalities modulo this axiomatization can be written as
shown in tables~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
simple. Types are reduced using axioms that can be oriented (this done by {\tt
MainSimplif}). The normal forms are sequences of Cartesian
products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components (this is done by {\tt
CompareStruct}). The main tactic to be called and realizing this algorithm is
{\tt IsoProve}.
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example}
Recursive Tactic Definition DSimplif trm:=
Match trm With
[(?1*?2)*?3] -> Rewrite <- (Ass ?1 ?2 ?3);Try MainSimplif
|[(?1*?2)->?3] -> Rewrite (Cur ?1 ?2 ?3);Try MainSimplif
|[?1->(?2*?3)] -> Rewrite (Dis ?1 ?2 ?3);Try MainSimplif
|[?1*unit] -> Rewrite (P_unit ?1);Try MainSimplif
|[unit*?1] -> Rewrite (Com unit ?1);Try MainSimplif
|[?1->unit] -> Rewrite (AR_unit ?1);Try MainSimplif
|[unit-> ?1] -> Rewrite (AL_unit ?1);Try MainSimplif
|[?1*?2] ->
((DSimplif ?1);Try MainSimplif) Orelse
((DSimplif ?2);Try MainSimplif)
|[?1-> ?2] ->
((DSimplif ?1);Try MainSimplif) Orelse
((DSimplif ?2);Try MainSimplif)
And MainSimplif:=
Match Context With
[|- ?1== ?2] -> Try (DSimplif ?1);Try (DSimplif ?2).
Tactic Definition Length trm:=
Match trm With
[?*?1] ->
Let succ=(Length ?1) In
'(S succ)
|_ -> '(1).
Tactic Definition Assoc:= Repeat Rewrite <- Ass.
\end{coq_example}
}}
\caption{Type isomorphism tactic (1)}
\label{isosltac1}
\end{table}
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example}
Recursive Tactic Definition DoCompare n:=
Match Context With
[|-?1==?1] -> Apply refl_eqT
|[|-(?1*?2)==(?1*?3)] ->
Apply Cons;
Let newn=(Length ?2) In
(DoCompare newn)
|[|-(?1*?2)==?3] ->
(Match Eval Compute in n With
[(1)] -> Fail
|_ ->
Pattern 1 (?1*?2);Rewrite Com;Assoc;
(DoCompare '(pred n))).
Tactic Definition CompareStruct:=
Match Context With
[|-?1==?2] ->
Let l1=(Length ?1)
And l2=(Length ?2) In
(Match Eval Compute in l1=l2 With
[?1=?1] -> (DoCompare ?1)).
Tactic Definition IsoProve:=MainSimplif;CompareStruct.
\end{coq_example}
}}
\caption{Type isomorphism tactic (2)}
\label{isosltac2}
\end{table}
Table~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}.
\begin{table}[ht]
\noindent{}\framebox[6in][l]
{\parbox{6in}
{
\begin{coq_example*}
Lemma isos_ex1:(A,B:Set)((A*unit)*B)==(B*(unit*A)).
Proof.
Intros;IsoProve.
Save.
Lemma isos_ex2:(A,B,C:Set)
((A*unit)->(B*C*unit))==
(((A*unit)->((C->unit)*C))*(unit->(A->B))).
Proof.
Intros;IsoProve.
Save.
\end{coq_example*}
}}
\caption{Type equalities solved by {\tt IsoProve}}
\label{isoslem}
\end{table}
|