1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
|
\chapter{The \gallina{} specification language}
\label{Gallina}\index{Gallina}
This chapter describes \gallina, the specification language of Coq.
It allows to develop mathematical theories and to prove specifications
of programs. The theories are built from axioms, hypotheses,
parameters, lemmas, theorems and definitions of constants, functions,
predicates and sets. The syntax of logical objects involved in
theories is described in section \ref{term}. The language of
commands, called {\em The Vernacular} is described in section
\ref{Vernacular}.
In Coq, logical objects are typed to ensure their logical
correctness. The rules implemented by the typing algorithm are described in
chapter \ref{Cic}.
\subsection*{About the grammars in the manual}
\label{BNF-syntax}\index{BNF metasyntax}
Grammars are presented in Backus-Naur form (BNF). Terminal symbols are
set in {\tt typewriter font}. In addition, there are special
notations for regular expressions.
An expression enclosed in square brackets \zeroone{\ldots} means at
most one occurrence of this expression (this corresponds to an
optional component).
The notation ``\nelist{\entry}{sep}'' stands for a non empty
sequence of expressions parsed by {\entry} and
separated by the literal ``{\tt sep}''\footnote{This is similar to the
expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in
standard BNF, or ``{\entry} $($ {\tt sep} {\entry} $)$*'' in
the syntax of regular expressions.}.
Similarly, the notation ``\nelist{\entry}{}'' stands for a non
empty sequence of expressions parsed by the ``{\entry}'' entry,
without any separator between.
At the end, the notation ``\sequence{\entry}{\tt sep}'' stands for a
possibly empty sequence of expressions parsed by the ``{\entry}'' entry,
separated by the literal ``{\tt sep}''.
\section{Lexical conventions}
\label{lexical}\index{Lexical conventions}
\paragraph{Blanks}
Space, newline and horizontal tabulation are considered as blanks.
Blanks are ignored but they separate tokens.
\paragraph{Comments}
Comments in {\Coq} are enclosed between {\tt (*} and {\tt
*)}\index{Comments}, and can be nested. They can contain any
character. However, string literals must be correctly closed. Comments
are treated as blanks.
\paragraph{Identifiers and access identifiers}
Identifiers, written {\ident}, are sequences of letters, digits,
\verb!_! and \verb!'!, that do not start with a digit or \verb!'!.
That is, they are recognized by the following lexical class:
\index{ident@\ident}
\begin{center}
\begin{tabular}{rcl}
{\firstletter} & ::= & \ml{a..z}\op\ml{A..Z}\op\ml{\_}%\op\ml{unicode-letter}
\\
{\subsequentletter} & ::= & \ml{a..z}\op\ml{A..Z}\op\ml{0..9}\op\ml{\_}%\op\ml{\$}
\op\ml{'} \\
{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{}\\
\end{tabular}
\end{center}
All characters are meaningful. In particular, identifiers are case-sensitive.
Access identifiers, written {\accessident}, are identifiers prefixed
by \verb!.! (dot) without blank. They are used in the syntax of qualified
identifiers.
\paragraph{Natural numbers and integers}
Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign.
\index{num@{\num}}
\index{integer@{\integer}}
\begin{center}
\begin{tabular}{r@{\quad::=\quad}l}
{\digit} & \ml{0..9} \\
{\num} & \nelistwithoutblank{\digit}{} \\
{\integer} & \zeroone{\ml{-}}{\num} \\
\end{tabular}
\end{center}
\paragraph{Strings}
\label{strings}
\index{string@{\qstring}}
Strings are delimited by \verb!"! (double quote), and enclose a
sequence of any characters different from \verb!"! or the sequence
\verb!""! to denote the double quote character. In grammars, the
entry for quoted strings is {\qstring}.
%% \begin{center}
%% \begin{tabular}{|l|l|}
%% \hline
%% Sequence & Character denoted \\
%% \hline
%% \verb"\\" & backslash (\verb"\") \\
%% \verb'\"' & double quote (\verb'"') \\
%% \verb"\n" & newline (LF) \\
%% \verb"\r" & return (CR) \\
%% \verb"\t" & horizontal tabulation (TAB) \\
%% \verb"\b" & backspace (BS) \\
%% \verb"\"$ddd$ & the character with ASCII code $ddd$ in decimal \\
%% \hline
%% \end{tabular}
%% \end{center}
%% Strings can be split on several lines using a backslash (\verb!\!) at
%% the end of each line, just before the newline. For instance,
%% \begin{flushleft}
%% \begin{small}
%% \begin{verbatim}
%% Add LoadPath "/usr/local/coq/\
%% contrib/Rocq/LAMBDA".
%% \end{verbatim}
%% \end{small}
%% \end{flushleft}
%% is correctly parsed, and equivalent to
%% \begin{flushleft}
%% \begin{small}
%% \begin{verbatim}
%% Add LoadPath "/usr/local/coq/contrib/Rocq/LAMBDA".
%% \end{verbatim}
%% \end{small}
%% \end{flushleft}
\paragraph{Keywords}
The following identifiers are reserved keywords, and cannot be
employed otherwise:
\begin{center}
\begin{tabular}{llllll}
\verb!_! &
\verb!as! &
\verb!at! &
\verb!cofix! &
\verb!else! &
\verb!end! \\
%
\verb!exists! &
\verb!exists2! &
\verb!fix! &
\verb!for! &
\verb!forall! &
\verb!fun! \\
%
\verb!if! &
\verb!IF! &
\verb!in! &
\verb!let! &
\verb!match! &
\verb!mod! \\
%
\verb!Prop! &
\verb!return! &
\verb!Set! &
\verb!then! &
\verb!Type! &
\verb!using! \\
%
\verb!where! &
\verb!with! &
\end{tabular}
\end{center}
%% Hard to maintain...
%% Although they are not considered as keywords, it is not advised to use
%% words of the following list as identifiers:
%% \begin{center}
%% \begin{tabular}{lllll}
%% \verb!Add! &
%% \verb!AddPath! &
%% \verb!Abort! &
%% \verb!Abstraction!&
%% \verb!All! \\
%% \verb!Begin! &
%% \verb!Cd! &
%% \verb!Chapter! &
%% \verb!Check! &
%% \verb!Compute! \\
%% % \verb!Conjectures! \\ que dans Show Conjectures sans conflit avec ident
%% \verb!Defined! &
%% \verb!DelPath! &
%% \verb!Drop! &
%% \verb!End! &
%% \verb!Eval! \\
%% % \verb!Explain! n'est pas documente
%% \verb!Extraction! &
%% \verb!Fact! &
%% \verb!Focus! &
%% % \verb!for! n'intervient que pour Scheme ... Induction ... sans conflit
%% % \verb!Go! n'est pas documente et semble peu robuste aux erreurs
%% \verb!Goal! &
%% \verb!Guarded! \\
%% \verb!Hint! &
%% \verb!Immediate! &
%% \verb!Induction! &
%% \verb!Infix! &
%% \verb!Inspect! \\
%% \verb!Lemma! &
%% \verb!Let! &
%% \verb!LoadPath! &
%% \verb!Local! &
%% \verb!Minimality! \\
%% \verb!ML! &
%% \verb!Module! &
%% \verb!Modules! &
%% \verb!Mutual! &
%% % \verb!Node! que dans Show Node sans conflit avec ident
%% \verb!Opaque! \\
%% \verb!Parameters! &
%% \verb!Print! &
%% \verb!Pwd! &
%% \verb!Remark! &
%% \verb!Remove! \\
%% \verb!Require! &
%% \verb!Reset! &
%% \verb!Restart! &
%% \verb!Restore! &
%% \verb!Resume! \\
%% \verb!Save! &
%% \verb!Scheme! &
%% % \verb!Script! que dans Show Script sans conflit avec ident
%% \verb!Search! &
%% \verb!Section! &
%% \verb!Show! \\
%% \verb!Silent! &
%% \verb!State! &
%% \verb!States! &
%% \verb!Suspend! &
%% \verb!Syntactic! \\
%% \verb!Test! &
%% \verb!Transparent!&
%% % \verb!Tree! que dans Show Tree et Explain Proof Tree sans conflit avec id
%% \verb!Undo! &
%% \verb!Unset! &
%% \verb!Unfocus! \\
%% \verb!Variables! &
%% \verb!Write! & & &
%% \end{tabular}
%% \end{center}
\paragraph{Special tokens}
The following sequences of characters are special tokens:
\begin{center}
\begin{tabular}{lllllll}
\verb/!/ &
\verb!%! &
\verb!&! &
\verb!&&! &
\verb!(! &
\verb!()! &
\verb!)! \\
%
\verb!*! &
\verb!+! &
\verb!++! &
\verb!,! &
\verb!-! &
\verb!->! &
\verb!.! \\
%
\verb!.(! &
\verb!..! &
\verb!/! &
\verb!/\! &
\verb!:! &
\verb!::! &
\verb!:<! \\
%
\verb!:=! &
\verb!:>! &
\verb!;! &
\verb!<! &
\verb!<-! &
\verb!<->! &
\verb!<:! \\
%
\verb!<=! &
\verb!<>! &
\verb!=! &
\verb!=>! &
\verb!=_D! &
\verb!>! &
\verb!>->! \\
%
\verb!>=! &
\verb!?! &
\verb!?=! &
\verb!@! &
\verb![! &
\verb!\/! &
\verb!]! \\
%
\verb!^! &
\verb!{! &
\verb!|! &
\verb!|-! &
\verb!||! &
\verb!}! &
\verb!~! \\\end{tabular}
\end{center}
Lexical ambiguities are resolved according to the ``longest match''
rule: when a sequence of non alphanumerical characters can be decomposed
into several different ways, then the first token is the longest
possible one (among all tokens defined at this moment), and so on.
\section{Terms}\label{term}\index{Terms}
\subsection{Syntax of terms}
Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic
set of terms which form the {\em Calculus of Inductive Constructions}
(also called \CIC). The formal presentation of {\CIC} is given in
chapter \ref{Cic}. Extensions of this syntax are given in chapter
\ref{Gallina-extension}. How to customize the syntax is described in
chapter \ref{Addoc-syntax}.
\begin{center}
\begin{figure}[htb]
\begin{tabular}{|lcl@{~~~~~}r|}
\hline
{\term} & ::= &
{\tt forall} {\binderlist} {\tt ,} {\term} &(\ref{products})\\
& $|$ & {\tt fun} {\binderlist} {\tt =>} {\term} &(\ref{abstractions})\\
& $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\
& $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\
& $|$ &
{\tt let} {\ident} \sequence{\binderlet}{} {\typecstr} {\tt :=} {\term}
{\tt in} {\term} &(\ref{let-in})\\
& $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let cofix} {\cofixpointbody}
{\tt in} {\term} &(\ref{fixpoints})\\
& $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt) :=} {\term}
{\tt in} {\term} &(\ref{caseanalysis})\\
& $|$ & {\tt if} {\term} \zeroone{\returntype} {\tt then} {\term}
{\tt else} {\term} &(\ref{caseanalysis})\\
& $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\
& $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\
& $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\
& $|$ & {\tt @} {\qualid} \sequence{\term}{}
&(\ref{Implicits-explicitation})\\
& $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\
& $|$ & {\tt match} \nelist{\caseitem}{\tt ,}
\zeroone{\casetype} {\tt with} &\\
&& ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end}
&(\ref{caseanalysis})\\
& $|$ & {\qualid} &(\ref{qualid})\\
& $|$ & {\sort} &(\ref{Gallina-sorts})\\
& $|$ & {\num} &(\ref{numerals})\\
& $|$ & {\_} &(\ref{applications})\\
& & &\\
{\termarg} & ::= & {\term} &\\
& $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )}
&(\ref{Implicits-explicitation})\\
& $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )}
&(\ref{Implicits-explicitation})\\
&&&\\
{\binderlist} & ::= & \nelist{\name}{} {\typecstr} &\\
& $|$ & {\binder} \nelist{\binderlet}{} &\\
{\binder} & ::= & {\name} &\\
& $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\
{\binderlet} & ::= & {\binder} &\\
& $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\
& & &\\
{\name} & \cn{}::= & {\ident} &\\
& $|$ & {\tt \_} &\\
&&&\\
{\qualid} & ::= & {\ident} &\\
& $|$ & {\qualid} {\accessident} &\\
& & &\\
{\sort} & ::= & {\tt Prop} &\\
& $|$ & {\tt Set} &\\
& $|$ & {\tt Type} &\\
\hline
\end{tabular}
\caption{Syntax of terms}
\label{term-syntax}
\index{term@{\term}}
\index{sort@{\sort}}
\end{figure}
\end{center}
\begin{center}
\begin{figure}[htb]
\begin{tabular}{|lcl|}
\hline
{\fixpointbodies} & ::= &
{\fixpointbody} \\
& $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}}
{\tt for} {\ident} \\
{\cofixpointbodies} & ::= &
{\cofixpointbody} \\
& $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}}
{\tt for} {\ident} \\
&&\\
{\fixpointbody} & ::= &
{\ident} \nelist{\binderlet}{} \zeroone{\annotation} {\typecstr}
{\tt :=} {\term} \\
{\cofixpointbody} & ::= &
{\ident} \sequence{\binderlet}{} {\typecstr} {\tt :=} {\term} \\
& &\\
{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\
&&\\
{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name}
\zeroone{{\tt in} \term} \\
&&\\
{\casetype} & ::= & {\tt return} {\term} \\
&&\\
{\returntype} & ::= & \zeroone{{\tt as} {\name}} {\casetype} \\
&&\\
{\eqn} & ::= & \nelist{\pattern}{\tt ,} {\tt =>} {\term}\\
\hline
\end{tabular}
\caption{Syntax of terms (continued)}
\label{term-syntax-aux}
\end{figure}
\end{center}
%%%%%%%
\subsection{Qualified identifiers and simple identifiers}
\label{qualid}
\label{ident}
{\em Qualified identifiers} ({\qualid}) denote {\em global constants}
(definitions, lemmas, theorems, remarks or facts), {\em global
variables} (parameters or axioms), {\em inductive
types} or {\em constructors of inductive types}.
{\em Simple identifiers} (or shortly {\em identifiers}) are a
syntactic subset of qualified identifiers. Identifiers may also
denote local {\em variables}, what qualified identifiers do not.
\subsection{Numerals}
\label{numerals}
Numerals have no definite semantics in the calculus. They are mere
notations that can be bound to objects through the notation mechanism
(see chapter~\ref{Addoc-syntax} for details). Initially, numerals are
bound to Peano's representation of natural numbers
(see~\ref{libnats}).
Note: negative integers are not at the same level as {\num}, for this
would make precedence unnatural.
\subsection{Sorts}\index{Sorts}
\index{Type@{\Type}}
\index{Set@{\Set}}
\index{Prop@{\Prop}}
\index{Sorts}
\label{Gallina-sorts}
There are three sorts \Set, \Prop\ and \Type.
\begin{itemize}
\item \Prop\ is the universe of {\em logical propositions}.
The logical propositions themselves are typing the proofs.
We denote propositions by {\form}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{form@{\form}}
\item \Set\ is is the universe of {\em program
types} or {\em specifications}.
The specifications themselves are typing the programs.
We denote specifications by {\specif}. This constitutes a semantic
subclass of the syntactic class {\term}.
\index{specif@{\specif}}
\item {\Type} is the type of {\Set} and {\Prop}
\end{itemize}
\noindent More on sorts can be found in section \ref{Sorts}.
\subsection{Types}
{\Coq} terms are typed. {\Coq} types are recognized by the same
syntactic class as {\term}. We denote by {\type} the semantic subclass
of types inside the syntactic class {\term}.
\index{type@{\type}}
\subsection{Abstractions}
\label{abstractions}
\index{abstractions}
The expression ``{\tt fun} {\ident} {\tt :} \type {\tt =>} {\term}''
denotes the {\em abstraction} of the variable {\ident} of type
{\type}, over the term {\term}.
One can abstract several variables successively: the notation {\tt
fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt :}~\type~{\tt
=>}~{\term} stands for {\tt fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt
=>}~{\ldots}~{\tt fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}
and the notation {\tt fun (}~{\localassums$_{1}$}~{\tt
)}~{\ldots}~{\tt (}~{\localassums$_{m}$}~{\tt ) =>}~{\term} is a
shorthand for {\tt fun}~{\localassums$_{1}$}~{\tt =>}~{\ldots}~{\tt
fun}~{\localassums$_{m}$}~{\tt =>}~{\term}.
\medskip
\Rem The types of variables (and the {\tt :}) may be omitted in an
abstraction when they can be synthesized by the system.
\Rem Local definitions may appear inside parentheses. Obviously, this
is expanded into a let-in.
\subsection{Products}
\label{products}
\index{products}
The expression ``{\tt forall}~{\ident}~{\tt :}~\type~{\tt ,}~{\term}''
denotes the {\em product} of the variable {\ident} of type {\type},
over the term {\term}.
Similarly, the expression {\tt forall} {\ident$_{1}$} {\ldots}
{\ident$_{n}$} {\tt :} \type {\tt ,} {\term} is equivalent to {\tt
forall} {\ident$_{1}$} {\tt :} \type {\tt ,} {\ldots} {\tt forall}
{\ident$_{n}$} {\tt :} \type {\tt ,} {\term} and the expression {\tt
forall (} {\typedidents$_{1}$} {\tt )} {\ldots} {\tt (}
{\typedidents$_{m}$} {\tt ),} {\term} is a equivalent to {\tt
forall}~{\typedidents$_{1}$} {\tt ,} {\ldots} {\tt forall}
{\typedidents$_{m}$} {\tt ,} {\term}
Non dependent product types have a special notation ``$A$ {\tt ->}
$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. This is to stress
on the fact that non dependent produt types are usual functional types.
\subsection{Applications}
\label{applications}
\index{applications}
{\tt (}\term$_0$ \term$_1${\tt)} denotes the application of
term \term$_0$ to \term$_1$.
The expression {\tt (}\term$_0$ \term$_1$ ... \term$_n${\tt)}
denotes the application of the term \term$_0$ to the arguments
\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots}
{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\term$_n$} {\tt )}:
associativity is to the left.
%% explicit application
%% \_
\subsection{Local definitions (let-in)}
\label{let-in}
\index{Local definitions}
\index{let-in}
{\tt let}{\ident}{\tt :=}{\term$_1$}{\tt in}~{\term$_2$} denotes the local
binding of \term$_1$ to the variable $\ident$ in \term$_2$.
\subsection{Definition by case analysis}
\label{caseanalysis}
\index{match@{\tt match\ldots with\ldots end}}
In a simple pattern \verb!(! \nelist{\ident}{} \verb!)!, the first {\ident}
is intended to be a constructor.
The expression {\tt match} {\term$_0$} {\tt with}
{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$}
{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a
{\em pattern-matching} over the term {\term$_0$} (expected to be of an
inductive type).
The ... is the resulting type of the whole {\tt match}
expression. Most of the time, when this type is the same as the
types of all the {\term$_i$}, the annotation is not needed\footnote{except
if no equation is given, to match the term in an empty type, e.g. the
type \texttt{False}}. The annotation has to be given when the
resulting type of the whole {\tt match} depends on the actual {\term$_0$}
matched.
%% TODO: variants let (,,) and if/then/else
\subsection{Recursive functions}
\label{fixpoints}
\index{fix@{fix \ident$_i$\{\dots\}}}
The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$}
\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$
\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for}
{\ident$_i$}'' denotes the $i$th component of a block of functions
defined by mutual well-founded recursion.
The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :}
{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$
{\tt :} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$th
component of a block of terms defined by a mutual guarded recursion.
The association of a single fixpoint and a local
definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt
:=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt :=
fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same
applies for co-fixpoints.
\subsection{Type cast}
\label{typecast}
\index{Cast}
The expression ``{\term}~{\tt :}~{\type}'' is a type cast
expression. It forces checking that {\term} has type {\type}. It is
identified to {\term}.
%% TODO
\subsection{Scopes}
\label{scopechange}
\index{Scopes}
%% TODO
\section{The Vernacular}
\label{Vernacular}
Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the
language of commands of \gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter
and ends with a dot.
\begin{figure}
\label{sentences-syntax}
\begin{tabular}{|lcl|}
\hline
{\sentence} & ::= & {\declaration} \\
& $|$ & {\definition} \\
& $|$ & {\statement} \\
& $|$ & {\inductive} \\
& $|$ & {\fixpoint} \\
& $|$ & {\statement} ~~ {\proof} \\
& & \\
{\params} & ::= & \nelist{\typedidents}{;} \\
& & \\
{\declaration} & ::= &
{\tt Axiom} {\ident} \verb.:. {\term} \verb:.: \\
& $|$ & {\declarationkeyword} {\params} \verb:.: \\
& & \\
{\declarationkeyword} & ::= &
{\tt Parameter} $|$ {\tt Parameters} \\
& $|$ & {\tt Variable} $|$ {\tt Variables} \\
& $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\
& & \\
{\definition} & ::= &
{\tt Definition} {\ident} \zeroone{{\tt :} {\term}} \verb.:=. {\term} \verb:.: \\
& $|$ & {\tt Local} {\ident} \zeroone{{\tt :} {\term}} \verb.:=. {\term} \verb:.: \\
& & \\
{\inductive} & ::= &
{\tt Inductive} \nelist{\inductivebody}{with}
\verb:.: \\
& $|$ &
{\tt CoInductive} \nelist{\inductivebody}{with}
\verb:.: \\
& & \\
{\inductivebody} & ::= &
{\ident} \zeroone{{\tt [} {\params} {\tt ]}} \verb.:. {\term}
\verb.:=.
\sequence{\constructor}{|} \\
& & \\
{\constructor} & ::= & {\ident} \verb.:. {\term} \\
& &\\
{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with}
\verb:.: \\
& $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with}
\verb:.: \\
& &\\
{\statement} & ::= & {\tt Theorem} {\ident} {\tt :} {\term} \verb:.: \\
& $|$ & {\tt Lemma} {\ident} {\tt :} {\term} \verb:.: \\
& $|$ & {\tt Definition} {\ident} {\tt :} {\term} \verb:.: \\
& & \\
{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\
& $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\
\hline
\end{tabular}
\caption{Syntax of sentences}
\end{figure}
The different kinds of command are described hereafter. They all suppose
that the terms occurring in the sentences are well-typed.
\subsection{Declarations}\index{Declarations}\label{Declarations}
The declaration mechanism allows the user to specify his own basic
objects. Declared objects play the role of axioms or parameters in
mathematics. A declared object is an {\ident} associated to a \term. A
declaration is accepted by {\Coq} if and only if this {\term} is a correct type
in the current context of the declaration and \ident\ was
not previously defined in the same module. This {\term}
is considered to be the type, or specification, of the \ident.
\subsubsection{{\tt Axiom {\ident} : {\term}}.}
\comindex{Axiom}
\label{Axiom}
This command links {\term} to the name {\ident} as its specification in the
global context. The fact asserted by {\term} is thus assumed
as a postulate.
\begin{ErrMsgs}
\item \errindex{Clash with previous constant {\ident}}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Parameter {\ident} : {\term}.}
\comindex{Parameter}\\
Is equivalent to {\tt Axiom {\ident} : {\term}}
\item {\tt Parameter \nelist{\nelistwithoutblank{\ident}{,} : {\term}}{;} {\tt .}} \\
% Is equivalent to {\tt Axiom {\lident} : {\term}}
Links the {\term}'s to the names comprising the lists \nelist{\nelist{\ident}{,} : {\term}}{;}.
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by
{\tt Parameters} when more than one parameter are given.
\subsubsection{{\tt Variable {\ident} : {\term}}.}\comindex{Variable}
\comindex{Variables}
This command links {\term} to the name {\ident} in the context of the
current section (see \ref{Section} for a description of the section
mechanism). The name {\ident} will be unknown when the current
section will be closed. One says that the variable is {\em
discharged}. Using the {\tt Variable} command out of any section is
equivalent to {\tt Axiom}.
\begin{ErrMsgs}
\item \errindex{Clash with previous constant {\ident}}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Variable \nelist{\nelist{\ident}{,}:{\term}}{;} {\tt .}}\\
Links {\term} to the
names comprising the list \nelist{\nelist{\ident}{,}:{\term}}{;}
\item {\tt Hypothesis \nelist{\nelist{\ident}{,} $\;$:$\;$ {\term}}{;} {\tt
.}} \comindex{Hypothesis}\\ % Ligne trop longue
\texttt{Hypothesis} is a synonymous of \texttt{Variable}
\end{Variants}
\noindent {\bf Remark: } It is possible to replace {\tt Variable} by
{\tt Variables} and \ml{Hypothesis} by {\tt Hypotheses}
when more than one variable or one hypothesis are given.
It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis:
for logical postulates (i.e. when the assertion {\term} is of sort
\verb:Prop:), and to use the keywords \verb:Parameter: and
\verb:Variable: in other cases (corresponding to the declaration of an
abstract mathematical entity).
\subsection{Definitions}\index{Definitions}\label{Simpl-definitions}
Definitions differ from declarations since they allow to give a name
to a term whereas declarations were just giving a type to a name. That
is to say that the name of a defined object can be replaced at any
time by its definition. This replacement is called
$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see section
\ref{delta}). A defined object is accepted by the system if and only if the
defining term is well-typed in the current context of the definition.
Then the type of the name is the type of term. The defined name is
called a {\em constant}\index{Constant} and one says that {\it the
constant is added to the environment}\index{Environment}.
A formal presentation of constants and environments is given in
section \ref{Typed-terms}.
\subsubsection{\tt Definition {\ident} := {\term}.}
\comindex{Definition}
This command binds the value {\term} to the name {\ident} in the
environment, provided that {\term} is well-typed.
\begin{ErrMsgs}
\item \errindex{Clash with previous constant {\ident}}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Definition {\ident} : {\term$_1$} := {\term$_2$}.} It
checks that the type of {\term$_2$} is definitionally equal to
{\term$_1$}, and registers {\ident} as being of type {\term$_1$},
and bound to value {\term$_2$}.
\end{Variants}
\begin{ErrMsgs}
\item \errindex{In environment \dots the term: {\term$_2$} does not have type
{\term$_1$}}.\\
\texttt{Actually, it has type {\term$_3$}}.
\end{ErrMsgs}
\SeeAlso sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}
\subsubsection{\tt Local {\ident} := {\term}.}\comindex{Local}
This command binds the value {\term} to the name {\ident} in the
environment of the current section. The name {\ident} will be unknown
when the current section will be closed and all occurrences of
{\ident} in persistent objects (such as theorems) defined within the
section will be replaced by \term. One can say that the {\tt Local}
definition is a kind of {\em macro}.
\begin{ErrMsgs}
\item \errindex{Clash with previous constant {\ident}}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Local {\ident} : {\term$_1$} := {\term$_2$}.}
\end{Variants}
\SeeAlso \ref{Section} (section mechanism), \ref{Opaque},
\ref{Transparent} (opaque/transparent constants), \ref{unfold}
% Let comme forme de Definition n'existe plus
%
%\subsubsection{\tt Let {\ident} := {\term}.}
%\comindex{Let}
%This command makes definition that are stronger than \texttt{Local},
%and weaker than \texttt{Definition}. The name {\ident} will be known in the
%current section and after having closed the current section, but will
%be unknown after closing the section above the current section.
%\begin{Variants}
%\item {\tt Local {\ident} : {\term$_1$} := {\term$_2$}.}
%\end{Variants}
%\SeeAlso \ref{Section}
\subsection{Inductive definitions}
\index{Inductive definitions} \label{gal_Inductive_Definitions}
\comindex{Inductive}\label{Inductive}
We gradually explain simple inductive types, simple
annotated inductive types, simple parametric inductive types,
mutually inductive types. We explain also co-inductive types.
\subsubsection{Simple inductive types}
The definition of a simple inductive type has the following form:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident} : {\sort} := \\
\begin{tabular}{clcl}
& {\ident$_1$} &:& {\type$_1$} \\
| & {\ldots} && \\
| & {\ident$_n$} &:& {\type$_n$}
\end{tabular}
\end{tabular}
}
\medskip
The name {\ident} is the name of the inductively defined type and
{\sort} is the universes where it lives.
The names {\ident$_1$}, {\ldots}, {\ident$_n$}
are the names of its constructors and {\type$_1$}, {\ldots},
{\type$_n$} their respective types. The types of the constructors have
to satisfy a {\em positivity condition} (see section \ref{Positivity})
for {\ident}. This condition ensures the soundness of the inductive
definition. If this is the case, the constants {\ident},
{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with
their respective types. Accordingly to the universe where
the inductive type lives({\it e.g.} its type {\sort}), {\Coq} provides a
number of destructors for {\ident}. Destructors are named
{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which
respectively correspond to elimination principles on {\tt Prop}, {\tt
Set} and {\tt Type}. The type of the destructors expresses structural
induction/recursion principles over objects of {\ident}. We give below
two examples of the use of the {\tt Inductive} definitions.
The set of natural numbers is defined as:
\begin{coq_example}
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
\end{coq_example}
The type {\tt nat} is defined as the least \verb:Set: containing {\tt
O} and closed by the {\tt S} constructor. The constants {\tt nat},
{\tt O} and {\tt S} are added to the environment.
Now let us have a look at the elimination principles. They are three :
{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt
nat\_ind} is:
\begin{coq_example}
Check nat_ind.
\end{coq_example}
This is the well known structural induction principle over natural
numbers, i.e. the second-order form of Peano's induction principle.
It allows to prove some universal property of natural numbers ({\tt
(n:nat)(P n)}) by induction on {\tt n}. Recall that {\tt (n:nat)(P n)}
is \gallina's syntax for the universal quantification $\forall
n:nat\cdot P(n).$\\ The types of {\tt nat\_rec} and {\tt nat\_rect}
are similar, except that they pertain to {\tt (P:nat->Set)} and {\tt
(P:nat->Type)} respectively . They correspond to primitive induction
principles (allowing dependent types) respectively over sorts
\verb:Set: and \verb:Type:. The constant {\ident}{\tt \_ind} is always
provided, whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be
impossible to derive (for example, when {\ident} is a proposition).
\subsubsection{Simple annotated inductive types}
In an annotated inductive types, the universe where the inductive
type is defined is no longer a simple sort, but what is called an
arity, which is a type whose conclusion is a sort.
As an example of annotated inductive types, let us define the
$even$ predicate:
\begin{coq_example}
Inductive even : nat -> Prop :=
| even_0 : even O
| even_SS : forall n:nat, even n -> even (S (S n)).
\end{coq_example}
The type {\tt nat->Prop} means that {\tt even} is a unary predicate
(inductively defined) over natural numbers. The type of its two
constructors are the defining clauses of the predicate {\tt even}. The
type of {\tt even\_ind} is:
\begin{coq_example}
Check even_ind.
\end{coq_example}
From a mathematical point of view it asserts that the natural numbers
satisfying the predicate {\tt even} are exactly the naturals satisfying
the clauses {\tt even\_0} or {\tt even\_SS}. This is why, when we want
to prove any predicate {\tt P} over elements of {\tt even}, it is
enough to prove it for {\tt O} and to prove that if any natural number
{\tt n} satisfies {\tt P} its double successor {\tt (S (S n))}
satisfies also {\tt P}. This is indeed analogous to the structural
induction principle we got for {\tt nat}.
\begin{ErrMsgs}
\item \errindex{Non strictly positive occurrence of {\ident} in {\type}}
\item \errindex{Type of Constructor not well-formed}
\end{ErrMsgs}
\begin{Variants}
\item {\tt Inductive {\ident} [ {\params} ] : {\term} :=
{\ident$_1$}:{\term$_1$} | {\ldots} | {\ident$_n$}:\term$_n$.}\\ Allows
to define parameterized inductive types.\\
For instance, one can define
parameterized lists as:
\begin{coq_example*}
Inductive list (X:Set) : Set :=
| Nil : list X
| Cons : X -> list X -> list X.
\end{coq_example*}
Notice that, in the type of {\tt Nil} and {\tt Cons}, we write {\tt
(list X)} and not just {\tt list}.\\ The constants {\tt Nil} and
{\tt Cons} will have respectively types:
\begin{coq_example}
Check Nil.
\end{coq_example}
and
\begin{coq_example}
Check Cons.
\end{coq_example}
Types of destructors will be also quantified with {\tt (X:Set)}.
\item {\tt Inductive {\sort} {\ident} :=
{\ident$_1$}:{\term$_1$} | {\ldots} | {\ident$_n$}:\term$_n$.}\\
with {\sort} being one of {\tt Prop, Type, Set} is
equivalent to \\ {\tt Inductive {\ident} : {\sort} :=
{\ident$_1$}:{\term$_1$} | {\ldots} | {\ident$_n$}:\term$_n$.}
\item {\tt Inductive {\sort} {\ident} [ {\params} ]:=
{\ident$_1$}:{\term$_1$} | {\ldots} | {\ident$_n$}:\term$_n$.}\\
Same as before but with parameters.
\end{Variants}
\SeeAlso sections \ref{Cic-inductive-definitions}, \ref{elim}
\subsubsection{Mutually inductive types}
\comindex{Mutual Inductive}\label{Mutual-Inductive}
The definition of a block of mutually inductive types has the form:
\medskip
{\tt
\begin{tabular}{l}
Inductive {\ident$_1$} : {\type$_1$} := \\
\begin{tabular}{clcl}
& {\ident$_1^1$} &:& {\type$_1^1$} \\
| & {\ldots} && \\
| & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$}
\end{tabular} \\
with\\
~{\ldots} \\
with {\ident$_m$} : {\type$_m$} := \\
\begin{tabular}{clcl}
& {\ident$_1^m$} &:& {\type$_1^m$} \\
| & {\ldots} \\
| & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}.
\end{tabular}
\end{tabular}
}
\medskip
\noindent It has the same semantics as the above {\tt Inductive}
definition for each \ident$_1$, {\ldots}, \ident$_m$. All names
\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots,
\ident$_{n_m}^m$ are simultaneously added to the environment. Then
well-typing of constructors can be checked. Each one of the
\ident$_1$, {\ldots}, \ident$_m$ can be used on its own.
It is also possible to parameterize these inductive definitions.
However, parameters correspond to a local
context in which the whole set of inductive declarations is done. For
this reason, the parameters must be strictly the same for each
inductive types The extended syntax is:
\medskip
{\tt
Inductive {{\ident$_1$} [{\rm\sl params} ] : {\type$_1$} := \\
\mbox{}\hspace{0.4cm} {\ident$_1^1$} : {\type$_1^1$} \\
\mbox{}\hspace{0.1cm}| .. \\
\mbox{}\hspace{0.1cm}| {\ident$_{n_1}^1$} : {\type$_{n_1}^1$} \\
with\\
\mbox{}\hspace{0.1cm} .. \\
with {\ident$_m$} [{\rm\sl params} ] : {\type$_m$} := \\
\mbox{}\hspace{0.4cm}{\ident$_1^m$} : {\type$_1^m$} \\
\mbox{}\hspace{0.1cm}| .. \\
\mbox{}\hspace{0.1cm}| {\ident$_{n_m}^m$} : {\type$_{n_m}^m$}.
}}
\medskip
\Example
The typical example of a mutual inductive data type is the one for
trees and forests. We assume given two types $A$ and $B$ as variables.
It can be declared the following way.
\begin{coq_example*}
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_example*}
This declaration generates automatically six induction
principles. They are respectively
called {\tt tree\_rec}, {\tt tree\_ind}, {\tt
tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt
forest\_rect}. These ones are not the most general ones but are
just the induction principles corresponding to each inductive part
seen as a single inductive definition.
To illustrate this point on our example, we give the types of {\tt
tree\_rec} and {\tt forest\_rec}.
\begin{coq_example}
Check tree_rec.
Check forest_rec.
\end{coq_example}
Assume we want to parameterize our mutual inductive definitions with
the two type variables $A$ and $B$, the declaration should be done the
following way:
\begin{coq_eval}
Reset tree.
\end{coq_eval}
\begin{coq_example*}
Inductive tree (A B:Set) : Set :=
node : A -> forest A B -> tree A B
with forest (A B:Set) : Set :=
| leaf : B -> forest A B
| cons : tree A B -> forest A B -> forest A B.
\end{coq_example*}
Assume we define an inductive definition inside a section. When the
section is closed, the variables declared in the section and occurring
free in the declaration are added as parameters to the inductive
definition.
\SeeAlso \ref{Section}
\subsubsection{Co-inductive types}
\comindex{CoInductive}
The objects of an inductive type are well-founded with respect to the
constructors of the type. In other words, such objects contain only a
{\it finite} number constructors. Co-inductive types arise from
relaxing this condition, and admitting types whose objects contain an
infinity of constructors. Infinite objects are introduced by a
non-ending (but effective) process of construction, defined in terms
of the constructors of the type.
An example of a co-inductive type is the type of infinite sequences of
natural numbers, usually called streams. It can be introduced in \Coq\
using the \texttt{CoInductive} command:
\begin{coq_example}
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
\end{coq_example}
The syntax of this command is the same as the command \texttt{Inductive}
(cf. section \ref{gal_Inductive_Definitions}). Notice that no
principle of induction is derived from the definition of a
co-inductive type, since such principles only make sense for inductive
ones. For co-inductive ones, the only elimination principle is case
analysis. For example, the usual destructors on streams
\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as
follows:
\begin{coq_example}
Definition hd (x:Stream) := match x with
| Seq a s => a
end.
Definition tl (x:Stream) := match x with
| Seq a s => s
end.
\end{coq_example}
Definition of co-inductive predicates and blocks of mutually
co-inductive definitions are also allowed. An example of a
co-inductive predicate is the extensional equality on streams:
\begin{coq_example}
CoInductive EqSt : Stream -> Stream -> Prop :=
eqst :
forall s1 s2:Stream,
hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
\end{coq_example}
In order to prove the extensionally equality of two streams $s_1$ and
$s_2$ we have to construct and infinite proof of equality, that is,
an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see
how to introduce infinite objects in section \ref{CoFixpoint}.
\subsection{Definition of recursive functions}
\subsubsection{\tt Fixpoint {\ident} [ \ident$_1$ : \type$_1$ ] :
\type$_0$ := \term$_0$}
\comindex{Fixpoint}\label{Fixpoint}
This command allows to define inductive objects using a fixed point
construction. The meaning of this declaration is to define {\it
ident} a recursive function with one argument \ident$_1$ of type
\term$_1$ such that ({\it ident}~\ident$_1$) has type \type$_0$ and is
equivalent to the expression \term$_0$. The type of the {\ident} is
consequently {(\ident$_1$ : \type$_1$)\type$_0$} and the value is
equivalent to [\ident$_1$ : \type$_1$]\term$_0$. The argument
{\ident$_1$} (of type {\type$_1$}) is called the {\em recursive
variable} of {\ident}. Its type should be an inductive definition.
To be accepted, a {\tt Fixpoint} definition has to satisfy some
syntactical constraints on this recursive variable. They are needed to
ensure that the {\tt Fixpoint} definition always terminates. For
instance, one can define the addition function as :
\begin{coq_example}
Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (add p m)
end.
\end{coq_example}
The {\tt match} operator matches a value (here \verb:n:) with the
various constructors of its (inductive) type. The remaining arguments
give the respective values to be returned, as functions of the
parameters of the corresponding constructor. Thus here when \verb:n:
equals \verb:O: we return \verb:m:, and when \verb:n: equals
\verb:(S p): we return \verb:(S (add p m)):.
The {\tt match} operator is formally described
in detail in section \ref{Caseexpr}. The system recognizes that in
the inductive call {\tt (add p m)} the first argument actually
decreases because it is a {\em pattern variable} coming from {\tt match
n with}.
\begin{Variants}
\item {\tt Fixpoint {\ident} [ {\params} ] : \type$_0$ :=
\term$_0$.}\\
It declares a list of identifiers with their type
usable in the type \type$_0$ and the definition body \term$_0$
and the last identifier in {\params} is the recursion variable.
\item {\tt Fixpoint {\ident$_1$} [ {\params$_1$} ] :
{\type$_1$} := {\term$_1$}\\
with {\ldots} \\
with {\ident$_m$} [ {\params$_m$} ] : {\type$_m$} :=
{\type$_m$}}\\
Allows to define simultaneously {\ident$_1$}, {\ldots},
{\ident$_m$}.
\end{Variants}
\Example The following definition is not correct and generates an
error message:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(********* Error: Recursive call to wrongplus ... **********)
\end{coq_eval}
\begin{coq_example}
Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O => n
| S p => S (wrongplus n p)
end.
\end{coq_example}
because the declared decreasing argument {\tt n} actually does not
decrease in the recursive call. The function computing the addition
over the second argument should rather be written:
\begin{coq_example*}
Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.
\end{coq_example*}
The ordinary match operation on natural numbers can be mimicked in the
following way.
\begin{coq_example*}
Fixpoint nat_match
(C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C :=
match n with
| O => f0
| S p => fS p (nat_match C f0 fS p)
end.
\end{coq_example*}
The recursive call may not only be on direct subterms of the recursive
variable {\tt n} but also on a deeper subterm and we can directly
write the function {\tt mod2} which gives the remainder modulo 2 of a
natural number.
\begin{coq_example*}
Fixpoint mod2 (n:nat) : nat :=
match n with
| O => O
| S p => match p with
| O => S O
| S q => mod2 q
end
end.
\end{coq_example*}
In order to keep the strong normalisation property, the fixed point
reduction will only be performed when the argument in position of the
recursive variable (whose type should be in an inductive definition)
starts with a constructor.
The {\tt Fixpoint} construction enjoys also the {\tt with} extension
to define functions over mutually defined inductive types or more
generally any mutually recursive definitions.
\Example
The size of trees and forests can be defined the following way:
\begin{coq_eval}
Reset Initial.
Variables A B : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
\end{coq_eval}
\begin{coq_example*}
Fixpoint tree_size (t:tree) : nat :=
match t with
| node a f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
A generic command {\tt Scheme} is useful to build automatically various
mutual induction principles. It is described in section \ref{Scheme}.
\subsubsection{\tt CoFixpoint {\ident} :
\type$_0$ := \term$_0$.}\comindex{CoFixpoint}\label{CoFixpoint}
The {\tt CoFixpoint} command introduces a method for constructing an
infinite object of a coinduc\-tive type. For example, the stream
containing all natural numbers can be introduced applying the
following method to the number \texttt{O}:
\begin{coq_example*}
CoInductive Stream : Set :=
Seq : nat -> Stream -> Stream.
Definition hd (x:Stream) := match x with
| Seq a s => a
end.
Definition tl (x:Stream) := match x with
| Seq a s => s
end.
\end{coq_example*}
\begin{coq_example}
CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
\end{coq_example}
Oppositely to recursive ones, there is no decreasing argument in a
co-recursive definition. To be admissible, a method of construction
must provide at least one extra constructor of the infinite object for
each iteration. A syntactical guard condition is imposed on
co-recursive definitions in order to ensure this: each recursive call
in the definition must be protected by at least one constructor, and
only by constructors. That is the case in the former definition, where
the single recursive call of \texttt{from} is guarded by an
application of \texttt{Seq}. On the contrary, the following recursive
function does not satisfy the guard condition:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(***************** Error: Unguarded recursive call *******************)
\end{coq_eval}
\begin{coq_example*}
CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
\end{coq_example*}
\noindent Notice that the definition contains an unguarded recursive
call of \texttt{filter} on the \texttt{else} branch of the test.
The elimination of co-recursive definition is done lazily, i.e. the
definition is expanded only when it occurs at the head of an
application which is the argument of a case expression. Isolate, it
is considered as a canonical expression which is completely
evaluated. We can test this using the command \texttt{Eval},
which computes the normal forms of a term:
\begin{coq_example}
Eval compute in (from 0).
Eval compute in (hd (from 0)).
Eval compute in (tl (from 0)).
\end{coq_example}
As in the \texttt{Fixpoint} command (cf. section~\ref{Fixpoint}), it
is possible to introduce a block of mutually dependent methods. The
general syntax for this case is:
{\tt CoFixpoint {\ident$_1$} :{\type$_1$} := {\term$_1$}\\
with\\
\mbox{}\hspace{0.1cm} $\ldots$ \\
with {\ident$_m$} : {\type$_m$} := {\term$_m$}}
\subsection{Statement and proofs}
A statement claims a goal of which the proof is then interactively done
using tactics. More on the proof editing mode, statements and proofs can be
found in chapter \ref{Proof-handling}.
\subsubsection{\tt Theorem {\ident} : {\type}.}
\comindex{Theorem}
This command binds {\type} to the name {\ident} in the
environment, provided that a proof of {\type} is next given.
After a statement, Coq needs a proof.
\begin{Variants}
\item {\tt Lemma {\ident} : {\type}.}\comindex{Lemma}\\
It is a synonymous of \texttt{Theorem}
\item {\tt Remark {\ident} : {\type}.}\comindex{Remark}\\
It is a synonymous of \texttt{Theorem}
% Same as {\tt Theorem} except
% that if this statement is in one or more levels of sections then the
% name {\ident} will be accessible only prefixed by the sections names
% when the sections (see \ref{Section} and \ref{LongNames}) will be
% closed.
% %All proofs of persistent objects (such as theorems) referring to {\ident}
% %within the section will be replaced by the proof of {\ident}.
\item {\tt Fact {\ident} : {\type}.}\comindex{Fact}\\
It is a synonymous of \texttt{Theorem}
% Same as {\tt Remark} except
% that the innermost section name is dropped from the full name.
\item {\tt Definition {\ident} : {\type}.} \\
Allow to define a term of type {\type} using the proof editing mode. It
behaves as {\tt Theorem} except the defined term will be transparent (see
\ref{Transparent}, \ref{unfold}).
\end{Variants}
\subsubsection{{\tt Proof} {\tt .} \dots {\tt Qed} {\tt .}}
A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the
proof editing mode until the proof is completed. The proof editing
mode essentially contains tactics that are described in chapter
\ref{Tactics}. Besides tactics, there are commands to manage the proof
editing mode. They are described in chapter \ref{Proof-handling}. When
the proof is completed it should be validated and put in the
environment using the keyword {\tt Qed}.
\medskip
\ErrMsg
\begin{enumerate}
\item \errindex{Clash with previous constant {\ident}}
\end{enumerate}
\begin{Remarks}
\item Several statements can be simultaneously opened.
\item Not only other statements but any vernacular command can be given
within the proof editing mode. In this case, the command is
understood as if it would have been given before the statements still to be
proved.
\item {\tt Proof} is recommended but can currently be omitted. On the
opposite, {\tt Qed} (or {\tt Defined}, see below) is mandatory to validate a proof.
\item Proofs ended by {\tt Qed} are declared opaque (see \ref{Opaque})
and cannot be unfolded by conversion tactics (see \ref{Conversion-tactics}).
To be able to unfold a proof, you should end the proof by {\tt Defined}
(see below).
\end{Remarks}
\begin{Variants}
\item {\tt Proof} {\tt .} \dots {\tt Defined} {\tt .}\\
\comindex{Proof}
Same as {\tt Proof} {\tt .} \dots {\tt Qed} {\tt .} but the proof is
then declared transparent (see \ref{Transparent}), which means it
can be unfolded in conversion tactics (see \ref{Conversion-tactics}).
\item {\tt Proof} {\tt .} \dots {\tt Save.}\\
Same as {\tt Proof} {\tt .} \dots {\tt Qed} {\tt .}
\item {\tt Goal} \type \dots {\tt Save} \ident \\
Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.}
This is intended to be used in the interactive mode. Conversely to named
lemmas, anonymous goals cannot be nested.
\end{Variants}
\comindex{Proof}
\comindex{Qed}
\comindex{Defined}
\comindex{Save}
\comindex{Goal}
% Local Variables:
% mode: LaTeX
% TeX-master: "Reference-Manual"
% End:
% $Id$
|