1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
|
\chapter{Extensions of \Gallina{}}
\label{Gallina-extension}\index{Gallina}
{\gallina} is the kernel language of {\Coq}. We describe here extensions of
the Gallina's syntax.
\section{Record types
\comindex{Record}
\label{Record}}
The \verb+Record+ construction is a macro allowing the definition of
records as is done in many programming languages. Its syntax is
described on figure \ref{record-syntax}. In fact, the \verb+Record+
macro is more general than the usual record types, since it allows
also for ``manifest'' expressions. In this sense, the \verb+Record+
construction allows to define ``signatures''.
\begin{figure}[h]
\begin{centerframe}
\begin{tabular}{lcl}
{\sentence} & ++= & {\record}\\
& & \\
{\record} & ::= &
{\tt Record} {\ident} \sequence{\binderlet}{} {\tt :} {\sort} \verb.:=. \\
&& ~~~~\zeroone{\ident}
\verb!{! \zeroone{\nelist{\field}{;}} \verb!}! \verb:.:\\
& & \\
{\field} & ::= & {\name} : {\type} \\
& $|$ & {\name} {\typecstr} := {\term}
\end{tabular}
\end{centerframe}
\caption{Syntax for the definition of {\tt Record}}
\label{record-syntax}
\end{figure}
\noindent In the expression
\smallskip
{\tt Record} {\ident} {\params} \texttt{:}
{\sort} := {\ident$_0$} \verb+{+
{\ident$_1$} \texttt{:} {\term$_1$};
\dots
{\ident$_n$} \texttt{:} {\term$_n$} \verb+}+.
\smallskip
\noindent the identifier {\ident} is the name of the defined record
and {\sort} is its type. The identifier {\ident$_0$} is the name of
its constructor. If {\ident$_0$} is omitted, the default name {\tt
Build\_{\ident}} is used. The identifiers {\ident$_1$}, ..,
{\ident$_n$} are the names of fields and {\term$_1$}, .., {\term$_n$}
their respective types. Remark that the type of {\ident$_i$} may
depend on the previous {\ident$_j$} (for $j<i$). Thus the order of the
fields is important. Finally, {\params} are the parameters of the
record.
More generally, a record may have explicitly defined (a.k.a.
manifest) fields. For instance, {\tt Record} {\ident} {\tt [}
{\params} {\tt ]} \texttt{:} {\sort} := \verb+{+ {\ident$_1$}
\texttt{:} {\type$_1$} \verb+;+ {\ident$_2$} \texttt{:=} {\term$_2$}
\verb+;+ {\ident$_3$} \texttt{:} {\type$_3$} \verb+}+ in which case
the correctness of {\type$_3$} may rely on the instance {\term$_2$} of
{\ident$_2$} and {\term$_2$} in turn may depend on {\ident$_1$}.
\Example
The set of rational numbers may be defined as:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Record Rat : Set := mkRat
{sign : bool;
top : nat;
bottom : nat;
Rat_bottom_cond : 0 <> bottom;
Rat_irred_cond :
forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}.
\end{coq_example}
Remark here that the field
\verb+Rat_cond+ depends on the field \verb+bottom+.
%Let us now see the work done by the {\tt Record} macro.
%First the macro generates an inductive definition
%with just one constructor:
%
%\medskip
%\noindent
%{\tt Inductive {\ident} {\binderlet} : {\sort} := \\
%\mbox{}\hspace{0.4cm} {\ident$_0$} : forall ({\ident$_1$}:{\term$_1$}) ..
%({\ident$_n$}:{\term$_n$}), {\ident} {\rm\sl params}.}
%\medskip
Let us now see the work done by the {\tt Record} macro. First the
macro generates an inductive definition with just one constructor:
\begin{quote}
{\tt Inductive {\ident} {\params} :{\sort} :=} \\
\qquad {\tt
{\ident$_0$} ({\ident$_1$}:{\term$_1$}) .. ({\ident$_n$}:{\term$_n$}).}
\end{quote}
To build an object of type {\ident}, one should provide the
constructor {\ident$_0$} with $n$ terms filling the fields of
the record.
As an example, let us define the rational $1/2$:
\begin{coq_example*}
Require Import Arith.
Theorem one_two_irred :
forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
\end{coq_example*}
\begin{coq_eval}
Lemma mult_m_n_eq_m_1 : forall m n:nat, m * n = 1 -> m = 1.
destruct m; trivial.
intros; apply f_equal with (f := S).
destruct m; trivial.
destruct n; simpl in H.
rewrite <- mult_n_O in H.
discriminate.
rewrite <- plus_n_Sm in H.
discriminate.
Qed.
intros x y z [H1 H2].
apply mult_m_n_eq_m_1 with (n := y); trivial.
\end{coq_eval}
\ldots
\begin{coq_example*}
Qed.
\end{coq_example*}
\begin{coq_example}
Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
\end{coq_example}
\begin{coq_example}
Check half.
\end{coq_example}
The macro generates also, when it is possible, the projection
functions for destructuring an object of type {\ident}. These
projection functions have the same name that the corresponding
fields. If a field is named ``\verb=_='' then no projection is built
for it. In our example:
\begin{coq_example}
Eval compute in half.(top).
Eval compute in half.(bottom).
Eval compute in half.(Rat_bottom_cond).
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{Warnings}
\item {\tt Warning: {\ident$_i$} cannot be defined.}
It can happen that the definition of a projection is impossible.
This message is followed by an explanation of this impossibility.
There may be three reasons:
\begin{enumerate}
\item The name {\ident$_i$} already exists in the environment (see
Section~\ref{Axiom}).
\item The body of {\ident$_i$} uses an incorrect elimination for
{\ident} (see Sections~\ref{Fixpoint} and~\ref{Caseexpr}).
\item The type of the projections {\ident$_i$} depends on previous
projections which themselves couldn't be defined.
\end{enumerate}
\end{Warnings}
\begin{ErrMsgs}
\item \errindex{A record cannot be recursive}
The record name {\ident} appears in the type of its fields.
\item During the definition of the one-constructor inductive
definition, all the errors of inductive definitions, as described in
Section~\ref{gal_Inductive_Definitions}, may also occur.
\end{ErrMsgs}
\SeeAlso Coercions and records in Section~\ref{Coercions-and-records}
of the chapter devoted to coercions.
\Rem {\tt Structure} is a synonym of the keyword {\tt Record}.
\Rem An experimental syntax for projections based on a dot notation is
available. The command to activate it is
\begin{quote}
{\tt Set Printing Projections.}
\end{quote}
\begin{figure}[t]
\begin{centerframe}
\begin{tabular}{lcl}
{\term} & ++= & {\term} {\tt .(} {\qualid} {\tt )}\\
& $|$ & {\term} {\tt .(} {\qualid} \nelist{\termarg}{} {\tt )}\\
& $|$ & {\term} {\tt .(} {@}{\qualid} \nelist{\term}{} {\tt )}
\end{tabular}
\end{centerframe}
\caption{Syntax of \texttt{Record} projections}
\label{fig:projsyntax}
\end{figure}
The corresponding grammar rules are given Figure~\ref{fig:projsyntax}.
When {\qualid} denotes a projection, the syntax {\tt
{\term}.({\qualid})} is equivalent to {\qualid~\term}, the syntax
{\tt {\term}.({\qualid}~{\termarg}$_1$~ \ldots~ {\termarg}$_n$)} to
{\qualid~{\termarg}$_1$ \ldots {\termarg}$_n$~\term}, and the syntax
{\tt {\term}.(@{\qualid}~{\term}$_1$~\ldots~{\term}$_n$)} to
{@\qualid~{\term}$_1$ \ldots {\term}$_n$~\term}. In each case, {\term}
is the object projected and the other arguments are the parameters of
the inductive type.
To deactivate the printing of projections, use
{\tt Unset Printing Projections}.
\section{Variants and extensions of {\tt match}
\label{Extensions-of-match}
\index{match@{\tt match\ldots with\ldots end}}}
\subsection{Multiple and nested pattern-matching
\index{ML-like patterns}
\label{Mult-match}}
The basic version of \verb+match+ allows pattern-matching on simple
patterns. As an extension, multiple and nested patterns are
allowed, as in ML-like languages.
The extension just acts as a macro that is expanded during parsing
into a sequence of {\tt match} on simple patterns. Especially, a
construction defined using the extended {\tt match} is printed under
its expanded form.
\SeeAlso chapter \ref{Mult-match-full}.
\subsection{Pattern-matching on boolean values: the {\tt if} expression
\index{if@{\tt if ... then ... else}}}
For inductive types with exactly two constructors and for
pattern-matchings expressions which do not depend on the arguments of
the constructors, it is possible to use a {\tt if ... then ... else}
notation. For instance, the definition
\begin{coq_example}
Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
\end{coq_example}
can be alternatively written
\begin{coq_eval}
Reset not.
\end{coq_eval}
\begin{coq_example}
Definition not (b:bool) := if b then false else true.
\end{coq_example}
More generally, for an inductive type with constructors {\tt C$_1$}
and {\tt C$_2$}, we have the following equivalence
\smallskip
{\tt if {\term} \zeroone{\ifitem} then {\term}$_1$ else {\term}$_2$} $\equiv$
\begin{tabular}[c]{l}
{\tt match {\term} \zeroone{\ifitem} with}\\
{\tt \verb!|! C$_1$ \_ {\ldots} \_ \verb!=>! {\term}$_1$} \\
{\tt \verb!|! C$_2$ \_ {\ldots} \_ \verb!=>! {\term}$_2$} \\
{\tt end}
\end{tabular}
Here is an example.
\begin{coq_example}
Check (fun x (H:{x=0}+{x<>0}) =>
match H with
| left _ => true
| right _ => false
end).
\end{coq_example}
Notice that the printing uses the {\tt if} syntax because {\tt sumbool} is
declared as such (see section \ref{printing-options}).
\subsection{Irrefutable patterns: the destructuring {\tt let}
\index{let in@{\tt let ... in}}
\label{Letin}}
Closed terms (that is not relying on any axiom or variable) in an
inductive type having only one constructor, say {\tt foo}, have
necessarily the form \texttt{(foo ...)}. In this case, the {\tt match}
construction can be written with a syntax close to the {\tt let ... in
...} construction. Expression {\tt let
(}~{\ident$_1$},\ldots,{\ident$_n$}~{\tt ) :=}~{\term$_0$}~{\tt
in}~{\term$_1$} performs case analysis on {\term$_0$} which must be in
an inductive type with one constructor with $n$ arguments. Variables
{\ident$_1$}\ldots{\ident$_n$} are bound to the $n$ arguments of the
constructor in expression {\term$_1$}. For instance, the definition
\begin{coq_example}
Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.
\end{coq_example}
can be alternatively written
\begin{coq_eval}
Reset fst.
\end{coq_eval}
\begin{coq_example}
Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
\end{coq_example}
Note however that reduction is slightly different from regular {\tt
let ... in ...} construction since it can occur only if {\term$_0$}
can be put in constructor form. Otherwise, reduction is blocked.
The pretty-printing of a definition by matching on a
irrefutable pattern can either be done using {\tt match} or the {\tt
let} construction (see Section~\ref{printing-options}).
The general equivalence for an inductive type with one constructors {\tt C} is
\smallskip
{\tt let ({\ident}$_1$,\ldots,{\ident}$_n$) \zeroone{\ifitem} := {\term} in {\term}'} \\
$\equiv\;$
{\tt match {\term} \zeroone{\ifitem} with \verb!|! C {\ident}$_1$ {\ldots} {\ident}$_n$ \verb!=>! {\term}' end}
\subsection{Options for pretty-printing of {\tt match}
\label{printing-options}}
There are three options controlling the pretty-printing of {\tt match}
expressions.
\subsubsection{Printing of wildcard pattern
\comindex{Set Printing Wildcard}
\comindex{Unset Printing Wildcard}
\comindex{Test Printing Wildcard}}
Some variables in a pattern may not occur in the right-hand side of
the pattern-matching clause. There are options to control the
display of these variables.
\begin{quote}
{\tt Set Printing Wildcard.}
\end{quote}
The variables having no occurrences in the right-hand side of the
pattern-matching clause are just printed using the wildcard symbol
``{\tt \_}''.
\begin{quote}
{\tt Unset Printing Wildcard.}
\end{quote}
The variables, even useless, are printed using their usual name. But some
non dependent variables have no name. These ones are still printed
using a ``{\tt \_}''.
\begin{quote}
{\tt Test Printing Wildcard.}
\end{quote}
This tells if the wildcard printing mode is on or off. The default is
to print wildcard for useless variables.
\subsubsection{Printing of the elimination predicate
\comindex{Set Printing Synth}
\comindex{Unset Printing Synth}
\comindex{Test Printing Synth}}
In most of the cases, the type of the result of a matched term is
mechanically synthesisable. Especially, if the result type does not
depend of the matched term.
\begin{quote}
{\tt Set Printing Synth.}
\end{quote}
The result type is not printed when {\Coq} knows that it can
re-synthesise it.
\begin{quote}
{\tt Unset Printing Synth.}
\end{quote}
This forces the result type to be always printed.
\begin{quote}
{\tt Test Printing Synth.}
\end{quote}
This tells if the non-printing of synthesisable types is on or off.
The default is to not print synthesisable types.
\subsubsection{Printing matching on irrefutable pattern
\comindex{Add Printing Let {\ident}}
\comindex{Remove Printing Let {\ident}}
\comindex{Test Printing Let {\ident}}
\comindex{Print Table Printing Let}}
If an inductive type has just one constructor,
pattern-matching can be written using {\tt let} ... {\tt :=}
... {\tt in}~...
\begin{quote}
{\tt Add Printing Let {\ident}.}
\end{quote}
This adds {\ident} to the list of inductive types for which
pattern-matching is written using a {\tt let} expression.
\begin{quote}
{\tt Remove Printing Let {\ident}.}
\end{quote}
This removes {\ident} from this list.
\begin{quote}
{\tt Test Printing Let {\ident}.}
\end{quote}
This tells if {\ident} belongs to the list.
\begin{quote}
{\tt Print Table Printing Let.}
\end{quote}
This prints the list of inductive types for which pattern-matching is
written using a {\tt let} expression.
The list of inductive types for which pattern-matching is written
using a {\tt let} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.
\subsubsection{Printing matching on booleans
\comindex{Add Printing If {\ident}}
\comindex{Remove Printing If {\ident}}
\comindex{Test Printing If {\ident}}
\comindex{Print Table Printing If}}
If an inductive type is isomorphic to the boolean type,
pattern-matching can be written using {\tt if} ... {\tt then} ... {\tt
else} ...
\begin{quote}
{\tt Add Printing If {\ident}.}
\end{quote}
This adds {\ident} to the list of inductive types for which
pattern-matching is written using an {\tt if} expression.
\begin{quote}
{\tt Remove Printing If {\ident}.}
\end{quote}
This removes {\ident} from this list.
\begin{quote}
{\tt Test Printing If {\ident}.}
\end{quote}
This tells if {\ident} belongs to the list.
\begin{quote}
{\tt Print Table Printing If.}
\end{quote}
This prints the list of inductive types for which pattern-matching is
written using an {\tt if} expression.
The list of inductive types for which pattern-matching is written
using an {\tt if} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.
\subsubsection{Example}
This example emphasizes what the printing options offer.
\begin{coq_example}
Test Printing Let prod.
Print fst.
Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print fst.
\end{coq_example}
% \subsection{Still not dead old notations}
% The following variant of {\tt match} is inherited from older version
% of {\Coq}.
% \medskip
% \begin{tabular}{lcl}
% {\term} & ::= & {\annotation} {\tt Match} {\term} {\tt with} {\terms} {\tt end}\\
% \end{tabular}
% \medskip
% This syntax is a macro generating a combination of {\tt match} with {\tt
% Fix} implementing a combinator for primitive recursion equivalent to
% the {\tt Match} construction of \Coq\ V5.8. It is provided only for
% sake of compatibility with \Coq\ V5.8. It is recommended to avoid it.
% (see section~\ref{Matchexpr}).
% There is also a notation \texttt{Case} that is the
% ancestor of \texttt{match}. Again, it is still in the code for
% compatibility with old versions but the user should not use it.
% Explained in RefMan-gal.tex
%% \section{Forced type}
%% In some cases, one may wish to assign a particular type to a term. The
%% syntax to force the type of a term is the following:
%% \medskip
%% \begin{tabular}{lcl}
%% {\term} & ++= & {\term} {\tt :} {\term}\\
%% \end{tabular}
%% \medskip
%% It forces the first term to be of type the second term. The
%% type must be compatible with
%% the term. More precisely it must be either a type convertible to
%% the automatically inferred type (see chapter \ref{Cic}) or a type
%% coercible to it, (see \ref{Coercions}). When the type of a
%% whole expression is forced, it is usually not necessary to give the types of
%% the variables involved in the term.
%% Example:
%% \begin{coq_example}
%% Definition ID := forall X:Set, X -> X.
%% Definition id := (fun X x => x):ID.
%% Check id.
%% \end{coq_example}
\section{Section mechanism
\index{Sections}
\label{Section}}
The sectioning mechanism allows to organise a proof in structured
sections. Then local declarations become available (see
Section~\ref{Simpl-definitions}).
\subsection{\tt Section {\ident}\comindex{Section}}
This command is used to open a section named {\ident}.
%% Discontinued ?
%% \begin{Variants}
%% \comindex{Chapter}
%% \item{\tt Chapter {\ident}}\\
%% Same as {\tt Section {\ident}}
%% \end{Variants}
\subsection{\tt End {\ident}
\comindex{End}}
This command closes the section named {\ident}. When a section is
closed, all local declarations (variables and local definitions) are
{\em discharged}. This means that all global objects defined in the
section are generalised with respect to all variables and local
definitions it depends on in the section. None of the local
declarations (considered as autonomous declarations) survive the end
of the section.
Here is an example :
\begin{coq_example}
Section s1.
Variables x y : nat.
Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.
Print x'.
End s1.
Print x'.
Print x''.
\end{coq_example}
Notice the difference between the value of {\tt x'} and {\tt x''}
inside section {\tt s1} and outside.
\begin{ErrMsgs}
\item \errindex{This is not the last opened section}
\end{ErrMsgs}
\begin{Remarks}
\item Most commands, like {\tt Hint}, {\tt Notation}, option management, ...
which appear inside a section are cancelled when the
section is closed.
% cf section \ref{LongNames}
%\item Usually all identifiers must be distinct.
%However, a name already used in a closed section (see \ref{Section})
%can be reused. In this case, the old name is no longer accessible.
% Obsolète
%\item A module implicitly open a section. Be careful not to name a
%module with an identifier already used in the module (see \ref{compiled}).
\end{Remarks}
\input{RefMan-mod.v}
\section{Libraries and qualified names}
\subsection{Names of libraries and files
\label{Libraries}
\index{Libraries}
\index{Logical paths}}
\paragraph{Libraries}
The theories developed in {\Coq} are stored in {\em libraries}. A
library is characterised by a name called {\it root} of the
library. The standard library of {\Coq} has root name {\tt Coq} and is
known by default when a {\Coq} session starts.
Libraries have a tree structure. E.g., the {\tt Coq} library
contains the sub-libraries {\tt Init}, {\tt Logic}, {\tt Arith}, {\tt
Lists}, ... The ``dot notation'' is used to separate the different
component of a library name. For instance, the {\tt Arith} library of
{\Coq} standard library is written ``{\tt Coq.Arith}''.
\medskip
\Rem no blank is allowed between the dot and the identifier on its
right, otherwise the dot is interpreted as the full stop (period) of
the command!
\medskip
\paragraph{Physical paths vs logical paths}
Libraries and sub-libraries are denoted by {\em logical directory
paths} (written {\dirpath} and of which the syntax is the same as
{\qualid}, see \ref{qualid}). Logical directory
paths can be mapped to physical directories of the
operating system using the command (see \ref{AddLoadPath})
\begin{quote}
{\tt Add LoadPath {\it physical\_path} as {\dirpath}}.
\end{quote}
A library can inherit the tree structure of a physical directory by
using the {\tt -R} option to {\tt coqtop} or the
command (see \ref{AddRecLoadPath})
\begin{quote}
{\tt Add Rec LoadPath {\it physical\_path} as {\dirpath}}.
\end{quote}
\Rem When used interactively with {\tt coqtop} command, {\Coq} opens a
library called {\tt Top}.
\paragraph{The file level}
At some point, (sub-)libraries contain {\it modules} which coincide
with files at the physical level. As for sublibraries, the dot
notation is used to denote a specific module of a library. Typically,
{\tt Coq.Init.Logic} is the logical path associated to the file {\tt
Logic.v} of {\Coq} standard library. Notice that compilation (see
\ref{Addoc-coqc}) is done at the level of files.
If the physical directory where a file {\tt File.v} lies is mapped to
the empty logical directory path (which is the default when using the
simple form of {\tt Add LoadPath} or {\tt -I} option to coqtop), then
the name of the module it defines is {\tt File}.
\subsection{Qualified names
\label{LongNames}
\index{Qualified identifiers}
\index{Absolute names}}
Modules contain constructions (sub-modules, axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The (full) name of a
construction starts with the logical name of the module in which it is defined
followed by the (short) name of the construction.
Typically, the full name {\tt Coq.Init.Logic.eq} denotes Leibniz' equality
defined in the module {\tt Logic} in the sublibrary {\tt Init} of the
standard library of \Coq.
\paragraph{Absolute, partially qualified and short names}
The full name of a library, module, section, definition, theorem,
... is its {\it absolute name}. The last identifier ({\tt eq} in the
previous example) is its {\it short name} (or sometimes {\it base
name}). Any suffix of the absolute name is a {\em partially qualified
name} (e.g. {\tt Logic.eq} is a partially qualified name for {\tt
Coq.Init.Logic.eq}). Partially qualified names (shortly {\em
qualified name}) are also built from identifiers separated by dots.
They are written {\qualid} in the documentation.
{\Coq} does not accept two constructions (definition, theorem, ...)
with the same absolute name but different constructions can have the
same short name (or even same partially qualified names as soon as the
full names are different).
\paragraph{Visibility}
{\Coq} maintains a {\it name table} mapping qualified names to absolute
names. This table is modified by the commands {\tt Require} (see
\ref{Require}), {\tt Import} and {\tt Export} (see \ref{Import}) and
also each time a new declaration is added to the context.
An absolute name is called {\it visible} from a given short or
partially qualified name when this name suffices to denote it. This
means that the short or partially qualified name is mapped to the absolute
name in {\Coq} name table.
It may happen that a visible name is hidden by the short name or a
qualified name of another construction. In this case, the name that
has been hidden must be referred to using one more level of
qualification. Still, to ensure that a construction always remains
accessible, absolute names can never be hidden.
Examples:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Check 0.
Definition nat := bool.
Check 0.
Check Datatypes.nat.
Locate nat.
\end{coq_example}
\Rem There is also a name table for sublibraries, modules and sections.
\Rem In versions prior to {\Coq} 7.4, lemmas declared with {\tt
Remark} and {\tt Fact} kept in their full name the names of the
sections in which they were defined. Since {\Coq} 7.4, they strictly
behaves as {\tt Theorem} and {\tt Lemma} do.
\SeeAlso Command {\tt Locate} in Section~\ref{Locate}.
%% \paragraph{The special case of remarks and facts}
%%
%% In contrast with definitions, lemmas, theorems, axioms and parameters,
%% the absolute name of remarks includes the segment of sections in which
%% it is defined. Concretely, if a remark {\tt R} is defined in
%% subsection {\tt S2} of section {\tt S1} in module {\tt M}, then its
%% absolute name is {\tt M.S1.S2.R}. The same for facts, except that the
%% name of the innermost section is dropped from the full name. Then, if
%% a fact {\tt F} is defined in subsection {\tt S2} of section {\tt S1}
%% in module {\tt M}, then its absolute name is {\tt M.S1.F}.
\paragraph{Requiring a file}
A module compiled in a ``.vo'' file comes with a logical names (e.g.
physical file \verb!theories/Init/Datatypes.vo! in the {\Coq} installation directory is bound to the logical module {\tt Coq.Init.Datatypes}).
When requiring the file, the mapping between physical directories and logical library should be consistent with the mapping used to compile the file (for modules of the standard library, this is automatic -- check it by typing {\tt Print LoadPath}).
The command {\tt Add Rec LoadPath} is also available from {\tt coqtop}
and {\tt coqc} by using option~\verb=-R=.
\section{Implicit arguments
\index{Implicit arguments}
\label{Implicit Arguments}}
An implicit argument of a function is an argument which can be
inferred from the knowledge of the type of other arguments of the
function, or of the type of the surrounding context of the application.
Especially, an implicit argument corresponds to a parameter
dependent in the type of the function. Typical implicit
arguments are the type arguments in polymorphic functions.
More precisely, there are several kinds of implicit arguments.
\paragraph{Strict Implicit Arguments.}
An implicit argument can be either strict or non strict. An implicit
argument is said {\em strict} if, whatever the other arguments of the
function are, it is still inferable from the type of some other
argument. Technically, an implicit argument is strict if it
corresponds to a parameter which is not applied to a variable which
itself is another parameter of the function (since this parameter
may erase its arguments), not in the body of a {\tt match}, and not
itself applied or matched against patterns (since the original
form of the argument can be lost by reduction).
For instance, the first argument of
\begin{quote}
\verb|cons: forall A:Set, A -> list A -> list A|
\end{quote}
in module {\tt List.v} is strict because {\tt list} is an inductive
type and {\tt A} will always be inferable from the type {\tt
list A} of the third argument of {\tt cons}.
On the opposite, the second argument of a term of type
\begin{quote}
\verb|forall P:nat->Prop, forall n:nat, P n -> ex nat P|
\end{quote}
is implicit but not strict, since it can only be inferred from the
type {\tt P n} of the the third argument and if {\tt P} is e.g. {\tt
fun \_ => True}, it reduces to an expression where {\tt n} does not
occur any longer. The first argument {\tt P} is implicit but not
strict either because it can only be inferred from {\tt P n} and {\tt
P} is not canonically inferable from an arbitrary {\tt n} and the
normal form of {\tt P n} (consider e.g. that {\tt n} is {\tt 0} and
the third argument has type {\tt True}, then any {\tt P} of the form
{\tt fun n => match n with 0 => True | \_ => \mbox{\em anything} end} would
be a solution of the inference problem.
\paragraph{Contextual Implicit Arguments.}
An implicit argument can be {\em contextual} or non. An implicit
argument is said {\em contextual} if it can be inferred only from the
knowledge of the type of the context of the current expression. For
instance, the only argument of
\begin{quote}
\verb|nil : forall A:Set, list A|
\end{quote}
is contextual. Similarly, both arguments of a term of type
\begin{quote}
\verb|forall P:nat->Prop, forall n:nat, P n \/ n = 0|
\end{quote}
are contextual (moreover, {\tt n} is strict and {\tt P} is not).
\subsection{Casual use of implicit arguments}
In a given expression, if it is clear that some argument of a function
can be inferred from the type of the other arguments, the user can
force the given argument to be guessed by replacing it by ``{\tt \_}''. If
possible, the correct argument will be automatically generated.
\begin{ErrMsgs}
\item \errindex{Cannot infer a term for this placeholder}
{\Coq} was not able to deduce an instantiation of a ``{\tt \_}''.
\end{ErrMsgs}
\subsection{Declaration of implicit arguments for a constant
\comindex{Implicit Arguments}}
In case one wants that some arguments of a given object (constant,
inductive types, constructors, assumptions, local or not) are always
inferred by Coq, one may declare once for all which are the expected
implicit arguments of this object. The syntax is
\begin{quote}
\tt Implicit Arguments {\qualid} [ \nelist{\ident}{} ]
\end{quote}
where the list of {\ident} is the list of parameters to be declared
implicit. After this, implicit arguments can just (and have to) be
skipped in any expression involving an application of {\qualid}.
\Example
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
\begin{coq_example}
Check (cons nat 3 (nil nat)).
Implicit Arguments cons [A].
Implicit Arguments nil [A].
Check (cons 3 nil).
\end{coq_example}
\Rem To know which are the implicit arguments of an object, use command
{\tt Print Implicit} (see \ref{PrintImplicit}).
\Rem If the list of arguments is empty, the command removes the
implicit arguments of {\qualid}.
\subsection{Automatic declaration of implicit arguments for a constant}
{\Coq} can also automatically detect what are the implicit arguments
of a defined object. The command is just
\begin{quote}
\tt Implicit Arguments {\qualid}.
\end{quote}
The auto-detection is governed by options telling if strict and
contextual implicit arguments must be considered or not (see
Sections~\ref{SetStrictImplicit} and~\ref{SetContextualImplicit}).
\Example
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
\end{coq_example*}
\begin{coq_example}
Implicit Arguments cons.
Print Implicit cons.
Implicit Arguments nil.
Print Implicit nil.
Set Contextual Implicit.
Implicit Arguments nil.
Print Implicit nil.
\end{coq_example}
The computation of implicit arguments takes account of the
unfolding of constants. For instance, the variable {\tt p} below has
type {\tt (Transitivity R)} which is reducible to {\tt forall x,y:U, R x
y -> forall z:U, R y z -> R x z}. As the variables {\tt x}, {\tt y} and
{\tt z} appear strictly in body of the type, they are implicit.
\begin{coq_example*}
Variable X : Type.
Definition Relation := X -> X -> Prop.
Definition Transitivity (R:Relation) :=
forall x y:X, R x y -> forall z:X, R y z -> R x z.
Variables (R : Relation) (p : Transitivity R).
Implicit Arguments p.
\end{coq_example*}
\begin{coq_example}
Print p.
Print Implicit p.
\end{coq_example}
\begin{coq_example*}
Variables (a b c : X) (r1 : R a b) (r2 : R b c).
\end{coq_example*}
\begin{coq_example}
Check (p r1 r2).
\end{coq_example}
\subsection{Mode for automatic declaration of implicit arguments
\label{Auto-implicit}
\comindex{Set Implicit Arguments}
\comindex{Unset Implicit Arguments}}
In case one wants to systematically declare implicit the arguments
detectable as such, one may switch to the automatic declaration of
implicit arguments mode by using the command
\begin{quote}
\tt Set Implicit Arguments.
\end{quote}
Conversely, one may unset the mode by using {\tt Unset Implicit
Arguments}. The mode is off by default. Auto-detection of implicit
arguments is governed by options controlling whether strict and
contextual implicit arguments have to be considered or not.
\subsection{Controlling strict implicit arguments
\comindex{Set Strict Implicit}
\comindex{Unset Strict Implicit}
\label{SetStrictImplicit}}
By default, {\Coq} automatically set implicit only the strict implicit
arguments. To relax this constraint, use command
\begin{quote}
\tt Unset Strict Implicit.
\end{quote}
Conversely, use command {\tt Set Strict Implicit} to
restore the strict implicit mode.
\Rem In versions of {\Coq} prior to version 8.0, the default was to
declare the strict implicit arguments as implicit.
\subsection{Controlling contextual implicit arguments
\comindex{Set Contextual Implicit}
\comindex{Unset Contextual Implicit}
\label{SetContextualImplicit}}
By default, {\Coq} does not automatically set implicit the contextual
implicit arguments. To tell {\Coq} to infer also contextual implicit
argument, use command
\begin{quote}
\tt Set Contextual Implicit.
\end{quote}
Conversely, use command {\tt Unset Contextual Implicit} to
unset the contextual implicit mode.
\subsection{Explicit Applications
\index{Explicitation of implicit arguments}
\label{Implicits-explicitation}
\index{qualid@{\qualid}}}
In presence of non strict or contextual argument, or in presence of
partial applications, the synthesis of implicit arguments may fail, so
one may have to give explicitly certain implicit arguments of an
application. The syntax for this is {\tt (\ident:=\term)} where {\ident}
is the name of the implicit argument and {\term} is its corresponding
explicit term. Alternatively, one can locally deactivate the hidding of
implicit arguments of a function by using the notation
{\tt @{\qualid}~{\term}$_1$..{\term}$_n$}. This syntax extension is
given Figure~\ref{fig:explicitations}.
\begin{figure}
\begin{centerframe}
\begin{tabular}{lcl}
{\term} & ++= & @ {\qualid} \nelist{\term}{}\\
& $|$ & @ {\qualid}\\
& $|$ & {\qualid} \nelist{\textrm{\textsl{argument}}}{}\\
\\
{\textrm{\textsl{argument}}} & ::= & {\term} \\
& $|$ & {\tt ({\ident}:={\term})}\\
\end{tabular}
\end{centerframe}
\caption{Syntax for explicitations of implicit arguments}
\label{fig:explicitations}
\end{figure}
\noindent {\bf Example (continued): }
\begin{coq_example}
Check (p r1 (z:=c)).
Check (p (x:=a) (y:=b) r1 (z:=c) r2).
\end{coq_example}
\subsection{Displaying what the implicit arguments are
\comindex{Print Implicit}
\label{PrintImplicit}}
To display the implicit arguments associated to an object use command
\begin{quote}
\tt Print Implicit {\qualid}.
\end{quote}
\subsection{Explicitation of implicit arguments for pretty-printing
\comindex{Set Print Implicit}
\comindex{Unset Print Implicit}}
By default the basic pretty-printing rules hide the inferable implicit
arguments of an application. To force printing all implicit arguments,
use command
\begin{quote}
{\tt Set Printing Implicit.}
\end{quote}
Conversely, to restore the hidding of implicit arguments, use command
\begin{quote}
{\tt Unset Printing Implicit.}
\end{quote}
\subsection{Canonical structures
\comindex{Canonical Structure}}
A canonical structure is an instance of a record/structure type that
can be used to solve equations involving implicit arguments. Assume
that {\qualid} denotes an object $(Build\_struc~ c_1~ \ldots~ c_n)$ in the
structure {\em struct} of which the fields are $x_1$, ...,
$x_n$. Assume that {\qualid} is declared as a canonical structure
using the command
\begin{quote}
{\tt Canonical Structure {\qualid}.}
\end{quote}
Then, each time an equation of the form $(x_i~
\_)=_{\beta\delta\iota\zeta}c_i$ has to be solved during the
type-checking process, {\qualid} is used as a solution. Otherwise
said, {\qualid} is canonically used to extend the field $c_i$ into a
complete structure built on $c_i$.
Canonical structures are particularly useful when mixed with
coercions and strict implicit arguments. Here is an example.
\begin{coq_example*}
Require Import Relations.
Require Import EqNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type :=
{Carrier :> Set;
Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.
Definition is_law (A B:Setoid) (f:A -> B) :=
forall x y:A, Equal x y -> Equal (f x) (f y).
Axiom eq_nat_equiv : equivalence nat eq_nat.
Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
Canonical Structure nat_setoid.
\end{coq_example*}
Thanks to \texttt{nat\_setoid} declared as canonical, the implicit
arguments {\tt A} and {\tt B} can be synthesised in the next statement.
\begin{coq_example}
Lemma is_law_S : is_law S.
\end{coq_example}
\Rem If a same field occurs in several canonical structure, then
only the structure declared first as canonical is considered.
\begin{Variants}
\item {\tt Canonical Structure {\ident} := {\term} : {\type}.}\\
{\tt Canonical Structure {\ident} := {\term}.}\\
{\tt Canonical Structure {\ident} : {\type} := {\term}.}
These are equivalent to a regular definition of {\ident} followed by
the declaration
{\tt Canonical Structure {\ident}}.
\end{Variants}
\SeeAlso more examples in user contribution \texttt{category}
(\texttt{Rocq/ALGEBRA}).
\subsection{Implicit types of variables}
It is possible to bind variable names to a given type (e.g. in a
development using arithmetic, it may be convenient to bind the names
{\tt n} or {\tt m} to the type {\tt nat} of natural numbers). The
command for that is
\begin{quote}
\tt Implicit Types \nelist{\ident}{} : {\type}
\end{quote}
The effect of the command is to automatically set the type of bound
variables starting with {\ident} (either {\ident} itself or
{\ident} followed by one or more single quotes, underscore or digits)
to be {\type} (unless the bound variable is already declared with an
explicit type in which case, this latter type is considered).
\Example
\begin{coq_example}
Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
intros m n.
Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
\end{coq_example}
\begin{Variants}
\item {\tt Implicit Type {\ident} : {\type}}\\
This is useful for declaring the implicit type of a single variable.
\end{Variants}
\section{Coercions
\label{Coercions}
\index{Coercions}}
Coercions can be used to implicitly inject terms from one {\em class} in
which they reside into another one. A {\em class} is either a sort
(denoted by the keyword {\tt Sortclass}), a product type (denoted by the
keyword {\tt Funclass}), or a type constructor (denoted by its name),
e.g. an inductive type or any constant with a type of the form
\texttt{forall} $(x_1:A_1) .. (x_n:A_n),~s$ where $s$ is a sort.
Then the user is able to apply an
object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided
that there is a declared coercion between A and B. The main command is
\comindex{Coercion}
\begin{quote}
\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.
\end{quote}
which declares the construction denoted by {\qualid} as a
coercion between {\class$_1$} and {\class$_2$}.
More details and examples, and a description of the commands related
to coercions are provided in chapter \ref{Coercions-full}.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% TeX-master: "Reference-Manual"
%%% End:
|