aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/RefMan-ext.tex
blob: cbf08d02718c71e6f44e2366755fafdb5f7236ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
\chapter{Extensions of {\sf Gallina}}
\label{Gallina-extension}\index{Gallina}

{\gallina} is the kernel language of {\Coq}. We describe here extensions of
the Gallina's syntax.

\section{Record types}\comindex{Record}
\label{Record}

The \verb+Record+ construction is a macro allowing the definition of
records as is done in many programming languages.  Its syntax is
described on figure \ref{record-syntax}.  In fact, the \verb+Record+
macro is more general than the usual record types, since it allows
also for ``manifest'' expressions. In this sense, the \verb+Record+
construction allows to define ``signatures''.

\begin{figure}
\begin{tabular}{|lcl|}
\hline
{\sentence} & ::= & {\record}\\
  & & \\
{\record} & ::= &  {\tt Record} {\ident} \zeroone{{\tt [} {\params} {\tt ]}} {\tt :} {\sort}
    \verb.:=. \zeroone{\ident} \verb!{! 
    \zeroone{\nelist{\field}{;}}
    \verb!}! \verb:.:\\
  & & \\
{\field} & ::= & {\ident} \verb.:. {\type} \\
 & $|$ & {\ident} \verb.:=. {\term} \\
 & $|$ & {\ident} \verb.:. {\type} \verb.:=. {\term} \\
\hline
\end{tabular}
\caption{Syntax for the definition of {\tt Record}}
\label{record-syntax}
\end{figure}

\noindent In the expression

\smallskip
{\tt Record} {\ident} {\tt [} {\params} {\tt ]} \texttt{:} 
   {\sort} := {\ident$_0$} \verb+{+
 {\ident$_1$} \texttt{:} {\term$_1$}; 
              \dots
  {\ident$_n$} \texttt{:} {\term$_n$} \verb+}+.
\smallskip
 
\noindent the identifier {\ident} is the name of the defined record and {\sort}
is its type. The identifier {\ident$_0$} is the name of its
constructor. If {\ident$_0$} is omitted, the default name {\tt
Build\_{\ident}} is used. The identifiers {\ident$_1$}, ..,
{\ident$_n$} are the names of fields and {\term$_1$}, .., {\term$_n$}
their respective types. Remark that the type of {\ident$_i$} may
depend on the previous {\ident$_j$} (for $j<i$). Thus the order of the
fields is important. Finally, {\params} are the parameters of the
record.

More generally, a record may have explicitly defined (a.k.a.
manifest) fields. For instance, {\tt Record} {\ident} {\tt [}
{\params} {\tt ]} \texttt{:} {\sort} := \verb+{+ {\ident$_1$}
\texttt{:} {\type$_1$} \verb+;+ {\ident$_2$} \texttt{:=} {\term$_2$} \verb+;+.
{\ident$_3$} \texttt{:} {\type$_3$} \verb+}+ in which case the correctness of {\type$_3$} may rely on the instance {\term$_2$}  of  {\ident$_2$ and  {\term$_2$}  in turn may depend on {\ident$_1$}.


\Example
The set of rational numbers may be defined as:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Record Rat : Set := mkRat {
 sign     : bool;
 top      : nat;
 bottom   : nat;
 Rat_bottom_cond : ~O=bottom;
 Rat_irred_cond:(x,y,z:nat)(mult x y)=top/\(mult x z)=bottom->x=(S O)}.
\end{coq_example}

Remark here that the field
\verb+Rat_cond+ depends on the field \verb+bottom+. 

Let us now see the work done by the {\tt Record} macro.
First the macro generates a inductive definition
with just one constructor:

\medskip
\noindent
{\tt Inductive {\ident} [ {\params} ] : {\sort} := \\
\mbox{}\hspace{0.4cm} {\ident$_0$} : ({\ident$_1$}:{\term$_1$}) .. 
({\ident$_n$}:{\term$_n$})({\ident} {\rm\sl params}).}
\medskip

To build an object of type {\ident}, one should provide the
constructor {\ident$_0$} with $n$ terms filling the fields of
the record.

Let us define the rational $1/2$.

\begin{coq_example*}
Require Arith.
Theorem one_two_irred: (x,y,z:nat)(mult x y)=(1)/\(mult x z)=(2)->x=(1).
\end{coq_example*}
\begin{coq_eval}
Lemma plus_m_n_eq_n_O : (m,n:nat)(plus m n)=O -> n=O.
Destruct m; Trivial.
Intros; Discriminate.
Qed.

Lemma mult_m_n_eq_m_1: (m,n:nat)(mult m n)=((S O))->m=(S O).
Destruct m;Trivial.
Intros; Apply f_equal with f:=S.
Generalize H.
Case n; Trivial.
Simpl.
Case n0;Simpl.
Intro; Rewrite <- mult_n_O; Intro; Discriminate.
Intros n1 n2 H0; Injection H0.
Intro H1.
LetTac H2:=(plus_m_n_eq_n_O n1 (S (plus n1 (mult n2 (S n1)))) H1).
Discriminate.
Qed.

Intros x y z (H1,H2). Apply mult_m_n_eq_m_1 with n:=y; Trivial.
\end{coq_eval}
\ldots
\begin{coq_example*}
Qed.
\end{coq_example*}
\begin{coq_example}
Definition half := (mkRat true (1) (2) (O_S (1)) one_two_irred).
\end{coq_example*}
\begin{coq_example}
Check half.
\end{coq_example}

The macro generates also, when it is possible, the projection
functions for destructuring an object of type {\ident}.
These projection functions have the same name that the corresponding
fields. In our example:

\begin{coq_example}
Eval Compute in (top half).
Eval Compute in (bottom half).
Eval Compute in (Rat_bottom_cond half).
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}

\begin{Warnings}
\item {\tt Warning: {\ident$_i$} cannot be defined.}\\
  It can happens that the definition of a projection is impossible.
  This message is followed by an explanation of this impossibility.
  There may be three reasons:
   \begin{enumerate}
   \item The name {\ident$_i$} already exists in the environment (see
     section \ref{Axiom}).
   \item The body of {\ident$_i$} uses a incorrect elimination for
     {\ident} (see sections \ref{Fixpoint} and \ref{Caseexpr}).
   \item {\tt The projections [ {\rm\sl idents} ] were not defined.}\\ 
     The body of {\term$_i$} uses the projections {\rm\sl idents}
     which are not defined for one of these three reasons listed here.
   \end{enumerate}  
\end{Warnings}     

\begin{ErrMsgs}
\item \errindex{A record cannot be recursive}\\
  The record name {\ident} appears in the type of its fields.

\item
  During the definition of the one-constructor inductive definition,
  all the errors of inductive definitions, as described in section
  \ref{gal_Inductive_Definitions}, may also occur.
\end{ErrMsgs}

\SeeAlso Coercions and records in section \ref{Coercions-and-records}
of the chapter devoted to coercions.

\section{Variants and extensions of {\tt Cases}}
\label{ExtensionsOfCases}
\index{Cases@{\tt Cases\ldots of\ldots end}}

\subsection{ML-style pattern-matching}
\index{ML-like patterns}
\label{Mult-Cases}

The basic version of \verb+Cases+ allows pattern-matching on simple
patterns. As an extension, multiple and nested patterns are
allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing
into a sequence of {\tt Cases} on simple patterns. Especially, a
construction defined using the extended {\tt Cases} is printed under
its expanded form.

The syntax of the extended {\tt Cases} is presented in figure 
\ref{ecases-grammar}.
Note the annotation is mandatory when the sequence of equation is
empty.

\begin{figure}[t]
\begin{tabular}{|rcl|}
\hline
{\nestedpattern}  & := & {\ident} \\
 & $|$ & \_ \\
 & $|$ & \texttt{(} {\ident} \nelist{\nestedpattern}{} \texttt{)} \\
 & $|$ & \texttt{(} {\nestedpattern} \texttt{as}  {\ident} \texttt{)} \\
 & $|$ & \texttt{(} {\nestedpattern} \texttt{,} {\nestedpattern} \texttt{)} \\
 & $|$ & \texttt{(} {\nestedpattern} \texttt{)} \\
 &&\\

{\multpattern} & := &  \nelist{nested\_pattern}{} \\
 && \\

{\exteqn} & := &  {\multpattern} \texttt{=>} {\term} \\
 && \\

{\term} & := &  
 \zeroone{\annotation} \texttt{Cases} \nelist{\term}{} \texttt{of} 
\sequence{\exteqn}{$|$} \texttt{end} \\
\hline
\end{tabular}
\caption{extended Cases syntax.}
\label{ecases-grammar}
\end{figure}

\SeeAlso chapter \ref{Mult-Cases-full}.

\subsection{Pattern-matching on boolean values: the {\tt if} expression}
\index{if@{\tt if ... then ... else}}

For inductive types isomorphic to the boolean types (i.e. two
constructors without arguments), it is possible to use a {\tt if
... then ... else} notation. This enriches the syntax of terms as follows:

\medskip
\begin{tabular}{rcl}
term & := & \zeroone{\annotation} {\tt if} {\term} {\tt then} {\term} {\tt else} {\term}\\
\end{tabular}
\medskip

For instance, the definition

\begin{coq_example}
Definition not := [b:bool] Cases b of true => false | false => true end.
\end{coq_example}

can be alternatively written

\begin{coq_eval}
Reset not.
\end{coq_eval}
\begin{coq_example}
Definition not := [b:bool] if b then false else true.
\end{coq_example}

\subsection{Irrefutable patterns: the destructuring {\tt let}}
\index{let in@{\tt let ... in}}
\label{Letin}

Terms in an inductive type having only one constructor, say {\tt foo}, have
necessarily the form \texttt{(foo ...)}. In this case, the {\tt Cases}
construction can be replaced by a {\tt let ... in ...} construction.
This enriches the syntax of terms as follows:

\medskip
\begin{tabular}{rcl}
 & $|$ & \zeroone{\annotation} {\tt let (} \nelist{\ident}{,} {\tt ) =}  {\term} {\tt in} {\term} \\
\end{tabular}
\medskip

For instance, the definition

\begin{coq_example}
Definition fst := [A,B:Set][H:A*B] Cases H of (pair x y) => x end.
\end{coq_example}

can be alternatively written 

\begin{coq_eval}
Reset fst.
\end{coq_eval}
\begin{coq_example}
Definition fst := [A,B:Set][p:A*B] let (x,_) = p in x.
\end{coq_example}

The pretty-printing of a definition by cases on a irrefutable pattern
can either be done using {\tt Cases} or the {\tt let}
construction (see section \ref{printing-options}).

\subsection{Options for pretty-printing of {\tt Cases}}
\label{printing-options}

There are three options controlling the pretty-printing of {\tt Cases}
expressions.

\subsubsection{Printing of wildcard pattern}
\comindex{Set Printing Wildcard}
\comindex{Unset Printing Wildcard}
\comindex{Test Printing Wildcard}

Some variables in a pattern may not occur in the right-hand side of
the pattern-matching clause.  There are options to control the
display of these variables.

\subsubsection{\tt Set Printing Wildcard.}
 The variables having no occurrences
in the right-hand side of the pattern-matching clause are just
printed using the wildcard symbol ``{\tt \_}''.

\subsubsection{\tt Unset Printing Wildcard.}
The variables, even useless, are printed using their usual name. But some
non dependent variables have no name. These ones are still printed
using a ``{\tt \_}''.

\subsubsection{\tt Test Printing Wildcard.}
This tells if the wildcard
printing mode is on or off. The default is to print wildcard for
useless variables.

\subsubsection{Printing of the elimination predicate}
\comindex{Set Printing Synth}
\comindex{Unset Printing Synth}
\comindex{Test Printing Synth}

In most of the cases, the type of the result of a matched term is
mechanically synthesizable. Especially, if the result type does not
depend of the matched term.

\subsubsection{\tt Set Printing Synth.}
The result type is not printed
when it is easily synthesizable.

\subsubsection{\tt Unset Printing Synth.}
This forces the result type to be always printed (and then between
angle brackets).

\subsubsection{\tt Test Printing Synth.}
This tells if the non-printing
of synthesizable types is on or off. The default is to not print 
synthesizable types.

\subsubsection{Printing matching on irrefutable pattern}
\comindex{Add Printing Let {\ident}}
\comindex{Remove Printing Let {\ident}}
\comindex{Test Printing Let {\ident}}
\comindex{Print Table Printing Let}

If an inductive type has just one constructor,
pattern-matching can be written using {\tt let} ... {\tt =}
... {\tt in}~...

\subsubsection{\tt Add Printing Let {\ident}.}
This adds {\ident} to the list
of inductive types for which pattern-matching is written using a {\tt
let} expression.

\subsubsection{\tt Remove Printing Let {\ident}.}
This removes {\ident} from this list.

\subsubsection{\tt Test Printing Let {\ident}.}
This tells if {\ident} belongs
to the list.

\subsubsection{\tt Print Table Printing Let.}
This prints the list of inductive types
for which pattern-matching is written using a {\tt
let} expression.

The table of inductive types for which pattern-matching is written
using a {\tt let} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.


\subsubsection{Printing matching on booleans}
\comindex{Add Printing If {\ident}}
\comindex{Remove Printing If {\ident}}
\comindex{Test Printing If {\ident}}
\comindex{Print Table Printing If}

If an inductive type is isomorphic to the boolean type,
pattern-matching can be written using {\tt if} ... {\tt then}
... {\tt else} ...

\subsubsection{\tt Add Printing If {\ident}.}
This adds {\ident} to the list
of inductive types for which pattern-matching is written using an {\tt
if} expression.

\subsubsection{\tt Remove Printing If {\ident}.}
This removes {\ident} from this list.

\subsubsection{\tt Test Printing If {\ident}.}
This tells if {\ident} belongs
to the list.

\subsubsection{\tt Print Table Printing If.}
This prints the list of inductive types
for which pattern-matching is written using an {\tt
if} expression.

The table of inductive types for which pattern-matching is written
using an {\tt if} expression is managed synchronously. This means that
it is sensible to the command {\tt Reset}.

\subsubsection{Example}

This example emphasizes what the printing options offer.

\begin{coq_example}
Test Printing Let prod.
Print fst.
Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print snd.
\end{coq_example}

% \subsection{Still not dead old notations}

% The following variant of {\tt Cases} is inherited from older version
% of {\Coq}. 

% \medskip
% \begin{tabular}{lcl}
% {\term} & ::= & {\annotation} {\tt Match} {\term} {\tt with} {\terms} {\tt end}\\
% \end{tabular}
% \medskip

% This syntax is a macro generating a combination of {\tt Cases} with {\tt
% Fix} implementing a combinator for primitive recursion equivalent to
% the {\tt Match} construction of \Coq\ V5.8. It is provided only for
% sake of compatibility with \Coq\ V5.8. It is recommended to avoid it.
% (see section~\ref{Matchexpr}).

% There is also a notation \texttt{Case} that is the
% ancestor of \texttt{Cases}. Again, it is still in the code for
% compatibility with old versions but the user should not use it.

\section{Forced type}

In some cases, one want to assign a particular type to a term. The
syntax to force the type of a term is the following:

\medskip
\begin{tabular}{lcl}
{\term} & ::= & {\tt (} {\term} {\tt ::} {\term} {\tt )}\\
\end{tabular}
\medskip

It forces the first term to be of type the second term. The
type must be compatible with
the term. More precisely it must be either a type convertible to
the automatically inferred type (see chapter \ref{Cic}) or a type
coercible to it, (see \ref{Coercions}). When the type of a
whole expression is forced, it is usually not necessary to give the types of
the variables involved in the term.

Example:

\begin{coq_example}
Definition ID := (X:Set) X -> X.
Definition id := (([X][x]x) :: ID).
Check id.
\end{coq_example}

\section{Section mechanism}\index{Sections}\label{Section}
The sectioning mechanism allows to organize a proof in structured
sections. Then local declarations become available (see section
\ref{Simpl-definitions}).

\subsection{\tt Section {\ident}}\comindex{Section}
This command is used to open a section named {\ident}.


\begin{Variants}
\comindex{Chapter}
\item{\tt Chapter {\ident}}\\
        Same as {\tt Section {\ident}}
\end{Variants}

\subsection{\tt End {\ident}}\comindex{End}
This command closes the section named {\ident}. When a section is
closed, all local declarations (variables and locals) are discharged. This means that all
global objects defined in the section are {\it closed} (in the sense
of $\lambda$-calculus) with as many abstractions as there were local
declarations in the section explicitly occurring in the term.  A local
object in the section is not exported and its value will be
substituted in the other definitions.

Here is an example :
\begin{coq_example}
Section s1.
Variables x,y : nat.
Local y' := y.
Definition x' := (S x).
Print x'.
End s1.
Print x'.
\end{coq_example}
Note the difference between the value of {\tt x'} inside section {\tt
  s1} and outside.

\begin{ErrMsgs}
\item \errindex{Section {\ident} does not exist (or is already closed)}
\item \errindex{Section {\ident} is not the innermost section}
\end{ErrMsgs}

\begin{Remarks}
\item Most commands, like {\tt Hint \ident} or {\tt Syntactic
  Definition} which appear inside a section are cancelled when the
section is closed.
% cf section \ref{LongNames}
%\item Usually all identifiers must be distinct. 
%However, a name already used in a closed section (see \ref{Section})
%can be reused. In this case, the old name is no longer accessible.

% Obsolète
%\item A module implicitly open a section. Be careful not to name a
%module with an identifier already used in the module (see \ref{compiled}).
\end{Remarks}

\section{Logical paths of libraries and compilation units}
\label{Libraries}
\index{Libraries}
\index{Logical paths}
\paragraph{Libraries}

The theories developed in {\Coq} are stored in {\em libraries}.  A
library is characterized by a name called {\it root} of the
library. The standard library of {\Coq} has root name {\tt Coq} and is
known by default when a {\Coq} session starts.

Libraries have a tree structure. E.g., the {\tt Coq} library
contains the sub-libraries {\tt Init}, {\tt Logic}, {\tt Arith}, {\tt
Lists}, ... The ``dot notation'' is used to separate the different
component of a library name. For instance, the {\tt Arith} library of
{\Coq} standard library is written ``{\tt Coq.Arith}''.

\medskip
\Rem no blank is allowed between the dot and the identifier on its
right, otherwise the dot is interpreted as the full stop (period) of
the command!
\medskip

\paragraph{Physical paths vs logical paths}

Libraries and sub-libraries are denoted by {\em logical directory
paths} (written {\dirpath} and of which the syntax is the same as
{\qualid}, see \ref{qualid}). Logical directory
paths can be mapped to physical directories of the
operating system using the command (see \ref{AddLoadPath})

\begin{quote}
{\tt Add LoadPath {\it physical\_path} as {\dirpath}}.
\end{quote}

A library can inherit the tree structure of a physical directory by
using the {\tt -R} option to {\tt coqtop} or the
command (see \ref{AddRecLoadPath})

\begin{quote}
{\tt Add Rec LoadPath {\it physical\_path} as {\dirpath}}.
\end{quote}

\paragraph{Compilation units (or modules)}
At some point, (sub-)libraries contain {\it modules} which coincide
with files at the physical level. 
As for sublibraries, the dot notation is used to denote a specific
module of a library. Typically, {\tt Coq.Init.Logic} is the logical path
associated to the file {\tt Logic.v} of {\Coq} standard library.

If the physical directory where a file {\tt file.v} lies is mapped to
the empty logical directory path (which is the default when using the
simple form of {\tt Add LoadPath} or {\tt -I} option to coqtop), then
the name of the module it defines is simply {\tt file}.

\section{Logical paths of libraries and compilation units}
\label{LongNames}
\index{Qualified identifiers}
\index{Absolute names}

Modules contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The (full) name of a
construction starts with the logical name of the module in which it is defined
followed by the (short) name of the construction.
Typically, {\tt Coq.Init.Logic.eq} denotes Leibniz' equality
defined in the module {\tt Logic} in the sublibrary {\tt Init} of the
standard library of \Coq.

\paragraph{Absolute and short names}

The full name of a library, module, section, definition, theorem,
... is called {\it absolute name}. 
The final identifier (in the example
above, it is {\tt eq}) is called {\it short name} (or sometimes {\it
base name}).  {\Coq} maintains a {\it names table} mapping short names
to absolute names. This greatly simplifies the notations.  {\Coq}
cannot accept two constructions (definition, theorem, ...) with the
same absolute name.

\paragraph{The special case of remarks and facts}

In contrast with definitions, lemmas, theorems, axioms and parameters,
the absolute name of remarks includes the segment of sections in which
it is defined. Concretely, if a remark {\tt R} is defined in
subsection {\tt S2} of section {\tt S1} in module {\tt M}, then its
absolute name is {\tt M.S1.S2.R}. The same for facts, except that the
name of the innermost section is dropped from the full name. Then, if
a fact {\tt F} is defined in subsection {\tt S2} of section {\tt S1}
in module {\tt M}, then its absolute name is {\tt M.S1.F}.

\paragraph{Visibility and qualified names}
An absolute name is called {\it visible} when its base name suffices
to denote it. This means the base name is mapped to the absolute name
in {\Coq} name table.

All the base names of definitions and
theorems are automatically put in the {\Coq} name table. But
sometimes, the short name of a construction defined in a module may
hide the short name of another construction defined in another module.
Instead of just distinguishing the clashing names by using the
absolute names, it is enough to prefix the base name just by the name
of the module in which the definition, theorem, ... is defined.
% Remark: when modules will be available, longer qualification may be needed
Such a name built from single identifiers separated by dots is called
a {\em partially qualified name} (or shortly a {\em qualified name},
written {\qualid}). Especially, both absolute names and short names
are qualified names. To ensure that a construction always remains
accessible, absolute names can never be hidden.

Examples:

\begin{coq_eval}
Reset Initial.
\end{coq_eval}

\begin{coq_example}
Check O.
Definition nat := bool.
Check O.
Check Datatypes.nat.
\end{coq_example}

\Rem There is also a names table for sublibraries, modules and sections.

\paragraph{Requiring a file}

A module compiled in a ``.vo'' file comes with a logical names (e.g. 
physical file \verb!theories/Init/Datatypes.vo! in {\Coq} installation directory contains logical module {\tt Coq.Init.Datatypes}). 
When requiring the file, the mapping between physical directories and logical library should be consistent with the mapping used to compile the file (for modules of the standard library, this is automatic -- check it by typing {\tt Print LoadPath}).

The command {\tt Add Rec LoadPath} is also available from {\tt coqtop}
and {\tt coqc} by using option~\verb=-R=.

\section{Implicit arguments}\index{implicit arguments}

The {\Coq} system allows to skip during a function application certain
arguments that can be automatically inferred from the other
arguments. Such arguments are called {\em implicit}. Typical implicit
arguments are the type arguments in polymorphic functions.

The user can force a subterm to be guessed by replacing it by
{\tt ?}. If possible, the correct subterm will be automatically generated.

\ErrMsg
\begin{enumerate}
\item \errindex{There is an unknown subterm I cannot solve} \\
  {\Coq} was not able to deduce an instantiation of a ``?''.
\end{enumerate}

In addition, there are two ways to systematically avoid to write
``{\tt ?}'' where a term can be automatically inferred.

The first mode is automatic. Switching to this mode forces some
easy-to-infer subterms to always be implicit.
The command to use the second mode is  {\tt Syntactic
Definition}.

\subsection{Auto-detection of implicit arguments}
\label{Auto-implicit}

There is an automatic mode to declare as implicit some arguments of
constants and variables which have a functional type. In this mode,
to every declared object (even inductive types and theirs constructors) is
associated the list of the positions of its implicit arguments. These
implicit arguments correspond to the arguments which can be deduced
from the following ones. Thus when one applies these functions to
arguments, one can omit the implicit ones. They are then automatically
replaced by symbols ``?'', to be inferred by the mechanism of
synthesis of implicit arguments.

\subsubsection{\tt Set Implicit Arguments.}
\comindex{Set Implicit Arguments}
\label{Implicit Arguments}

This command switches the automatic implicit arguments
mode on. To switch it off, use {\tt Unset Implicit Arguments.}.
The mode is off by default.

The computation of implicit arguments takes account of the
unfolding of constants.  For instance, the variable {\tt p} below has
a type {\tt (Transitivity R)} which is reducible to {\tt (x,y:U)(R x
y) -> (z:U)(R y z) -> (R x z)}. As the variables {\tt x}, {\tt y} and
{\tt z} appear in the body of the type, they are said implicit; they
correspond respectively to the positions {\tt 1}, {\tt 2} and {\tt 4}.

\begin{coq_example*}
Set Implicit Arguments.
Variable X : Type.
Definition Relation := X -> X -> Prop.
Definition Transitivity := [R:Relation]
           (x,y:X)(R x y) -> (z:X)(R y z) -> (R x z).
Variables R:Relation; p:(Transitivity R).
\end{coq_example*}
\begin{coq_example}
Print p.
\end{coq_example}
\begin{coq_example*}
Variables a,b,c:X;  r1:(R a b); r2:(R b c).
\end{coq_example*}
\begin{coq_example}
Check (p r1 r2).
\end{coq_example}

\subsubsection{Explicit Applications}

The mechanism of synthesis of implicit arguments is not complete, so
we have sometimes to give explicitly certain implicit arguments of an
application. The syntax is {\tt $i$!}{\term} where $i$ is the position
of an implicit argument and {\term} is its corresponding explicit
term. The number $i$ is called {\em explicitation number}.  We can
also give all the arguments of an application, we have then to write
{\tt (!{\ident}~{\term}$_1$..{\term}$_n$)}.

\ErrMsg
\begin{enumerate}
\item \errindex{Bad explicitation number}
\end{enumerate}

\Example

\begin{coq_example}
Check (p r1 4!c).
Check (!p a b r1 c r2).
\end{coq_example}

\subsubsection{Implicit Arguments and Pretty-Printing}

The basic pretty-printing rules hide the implicit arguments of an
application. However an implicit argument {\term} of an application
which is not followed by any explicit argument is printed as follows
$i!${\term} where $i$ is its position.

\subsection{User-defined implicit arguments: {\tt Syntactic definition}}
\comindex{Syntactic Definition}
\label{Syntactic-Definition}

The syntactic definitions define syntactic constants, i.e. give a name
to a term possibly untyped but syntactically correct. Their syntax
is:

\begin{center}
\verb+Syntactic Definition+ $name$ \verb+:=+ $term$ \verb+.+ \\
\end{center}

Syntactic definitions behave like macros: every occurrence of a
syntactic constant in an expression is immediately replaced by its
body.

Let us extend our functional language with the definition of the
identity function:

\begin{coq_eval}
Unset Implicit Arguments.
Reset Initial.
\end{coq_eval}
\begin{coq_example}
Definition explicit_id := [A:Set][a:A]a.
\end{coq_example}

\index{questionmark@{\texttt{?}}}
We declare also a syntactic definition {\tt id}:

\begin{coq_example}
Syntactic Definition id := (explicit_id ?).
\end{coq_example}

The term {\tt (explicit\_id ?)} is untyped since the implicit
arguments cannot be synthesized. There is no type check during this
definition.  Let us see what happens when we use a syntactic constant
in an expression like in the following example.

\begin{coq_example}
Check (id O).
\end{coq_example}

\noindent First the syntactic constant {\tt id} is replaced by its
body {\tt (explicit\_id ?)} in the expression. Then the resulting
expression is evaluated by the typechecker, which fills in
``\verb+?+'' place-holders.

The standard usage of syntactic definitions is to give names to terms
applied to implicit arguments ``\verb+?+''. In this case, a special
command is provided:

\begin{center}
\verb+Syntactic Definition+ $name$ \verb+:=+ $term$ \verb+|+ $n$ \verb+.+ \\
\end{center}

\noindent The body of the syntactic constant is $term$ applied to $n$
place-holders ``\verb+?+''.

We can define a new syntactic definition {\tt id1} for {\tt
  explicit\_id} using this command. We changed the name of the
syntactic constant in order to avoid a name conflict with {\tt id}.

\begin{coq_example}
Syntactic Definition id1 := explicit_id | 1.
\end{coq_example}

The new syntactic constant {\tt id1} has the same behavior as {\tt
  id}:

\begin{coq_example}
Check (id1 O).
\end{coq_example}


\begin{Warnings}
\item Syntactic constants defined inside a section are no longer
  available after closing the section.
\item You cannot see the body of a syntactic constant with a {\tt
    Print} command.
\end{Warnings}

\section{Implicit Coercions}
\label{Coercions}\index{Coercions}

Coercions can be used to implicitly inject terms from one ``class'' in
which they reside into another one. A {\em class} is either a sort
(denoted by the keyword SORTCLASS), a product type (denoted by the
keyword FUNCLASS) or an inductive type (denoted by its name).

Then the user is able to apply an
object that is not a function, but can be coerced to a function, and
more generally to consider that a term of type A is of type B provided
that there is a declared coercion between A and B.

\subsection{\tt Class {\ident}.}\comindex{Class}
Declares the name {\ident} as a new class.

\begin{Variant}
\item {\tt Class Local {\ident}.} \\
Declares the name {\ident} as a new local class to the current section.
\end{Variant}

\subsection{\tt Coercion {\ident} : {\ident$_1$} >-> {\ident$_2$}.}
\comindex{Coercion}

Declares the name {\ident} as a coercion between {\ident$_1$} and
{\ident$_2$}. The classes {\ident$_1$} and {\ident$_2$} are first
declared if necessary.

\begin{Variants}
\item {\tt Coercion Local {\ident} : {\ident$_1$} >-> {\ident$_2$}.}\comindex{Coercion Local}\\
Declares the name {\ident} as a coercion local to the current section.

\item {\tt Identity Coercion {\ident}:{\ident$_1$} >->
    {\ident$_2$}.}\comindex{Identity Coercion}\\
Coerce an inductive type to a subtype of it.

\item {\tt Identity Coercion Local {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\
Idem but locally to the current section.

\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\
  This defines {\ident} just like \texttt{Definition {\ident} :=
    {\term}}, and then declares {\ident} as a coercion between it
  source and its target.

\item {\tt Coercion {\ident} := {\term} : {\type}}\\
  This defines {\ident} just like 
  \texttt{Definition {\ident} : {\type} := {\term}}, and then
  declares {\ident} as a coercion between it source and its target. 

\item {\tt Coercion Local {\ident} := {\term}}\comindex{Local Coercion}\\
  This defines {\ident} just like \texttt{Local {\ident} :=
    {\term}}, and then declares {\ident} as a coercion between it
  source and its target.

\end{Variants}

\SeeAlso the technical chapter \ref{Coercions-full} on coercions.

\subsection{Displaying available coercions}

\subsubsection{\tt Print Classes.}\comindex{Print Classes}
Print the list of declared classes in the current context.

\subsubsection{\tt Print Coercions.}\comindex{Print Coercions}
Print the list of declared coercions in the current context.

\subsubsection{\tt Print Graph.}\comindex{Print Graph}
Print the list of valid path coercions in the current context.

\subsection{Activating the printing of coercions}

\subsubsection{\tt Set Printing Coercions.}
\comindex{Set Printing Coercions}
\comindex{Unset Printing Coercions}

This command forces all the coercions to be printed.
To skip the printing of coercions, use
 {\tt Unset Printing Coercions}.
By default, coercions are not printed.

\subsubsection{\tt Set Printing Coercion {\qualid}.}
\comindex{Set Printing Coercion}
\comindex{Unset Printing Coercion}

This command forces coercion denoted by {\qualid} to be printed.
To skip the printing of coercion {\qualid}, use
 {\tt Unset Printing Coercion {\qualid}}.
By default, a coercion is never printed.


%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% TeX-master: "Reference-Manual"
%%% End: