aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/subtac/test/ListsTest.v
blob: b8d13fe6bcd9915c9b772b0242e3b2f32a8fe87b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
(* -*- coq-prog-args: ("-emacs-U" "-debug") -*- *)
Require Import Coq.subtac.Utils.
Require Import List.

Set Implicit Arguments.

Section Accessors.
  Variable A : Set.

  Program Definition myhd : forall { l : list A | length l <> 0 }, A :=  
    fun l =>
      match l with
        | nil => !
        | hd :: tl => hd
      end.

  Program Definition mytail (l : list A | length l <> 0) : list A :=
    match l with
      | nil => !
      | hd :: tl => tl
    end.
End Accessors.

Program Definition test_hd : nat := myhd (cons 1 nil).

(*Eval compute in test_hd*)
(*Program Definition test_tail : list A := mytail nil.*)

Section app.
  Variable A : Set.

  Program Fixpoint app (l : list A) (l' : list A) { struct l } :
    { r : list A | length r = length l + length l' } :=
    match l with
      | nil => l'
      | hd :: tl => hd :: (tl ++ l')
    end 
    where "x ++ y" := (app x y).

  Next Obligation.
    intros.
    destruct_call app ; subtac_simpl.
  Defined.
  
  Program Lemma app_id_l : forall l : list A, l = nil ++ l.
  Proof.
    simpl ; auto.
  Qed.
  
  Program Lemma app_id_r : forall l : list A, l = l ++ nil.
  Proof.
    induction l ; simpl ; auto.
    rewrite <- IHl ; auto.
  Qed.

End app.

Extraction app.

Section Nth.

  Variable A : Set.

  Program Fixpoint nth (l : list A) (n : nat | n < length l) { struct l } : A := 
    match n, l with
      | 0, hd :: _ => hd
      | S n', _ :: tl => nth tl n'
      | _, nil => !
    end.

  Next Obligation.
  Proof.
    inversion l0.
  Defined.
End Nth.