1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
|
open Evd
open Libnames
open Coqlib
open Term
open Names
open Util
(****************************************************************************)
(* Library linking *)
let contrib_name = "subtac"
let subtac_dir = [contrib_name]
let fix_sub_module = "FixSub"
let utils_module = "Utils"
let fixsub_module = subtac_dir @ [fix_sub_module]
let utils_module = subtac_dir @ [utils_module]
let init_constant dir s = gen_constant contrib_name dir s
let init_reference dir s = gen_reference contrib_name dir s
let fixsub = lazy (init_constant fixsub_module "Fix_sub")
let ex_pi1 = lazy (init_constant utils_module "ex_pi1")
let ex_pi2 = lazy (init_constant utils_module "ex_pi2")
let make_ref l s = lazy (init_reference l s)
let well_founded_ref = make_ref ["Init";"Wf"] "Well_founded"
let acc_ref = make_ref ["Init";"Wf"] "Acc"
let acc_inv_ref = make_ref ["Init";"Wf"] "Acc_inv"
let fix_sub_ref = make_ref ["subtac";"FixSub"] "Fix_sub"
let fix_measure_sub_ref = make_ref ["subtac";"FixSub"] "Fix_measure_sub"
let lt_ref = make_ref ["Init";"Peano"] "lt"
let lt_wf_ref = make_ref ["Wf_nat"] "lt_wf"
let make_ref s = Qualid (dummy_loc, qualid_of_string s)
let sig_ref = make_ref "Init.Specif.sig"
let proj1_sig_ref = make_ref "Init.Specif.proj1_sig"
let proj2_sig_ref = make_ref "Init.Specif.proj2_sig"
let build_sig () =
{ proj1 = init_constant ["Init"; "Specif"] "proj1_sig";
proj2 = init_constant ["Init"; "Specif"] "proj2_sig";
elim = init_constant ["Init"; "Specif"] "sig_rec";
intro = init_constant ["Init"; "Specif"] "exist";
typ = init_constant ["Init"; "Specif"] "sig" }
let sig_ = lazy (build_sig ())
let eqind = lazy (init_constant ["Init"; "Logic"] "eq")
let eqind_ref = lazy (init_reference ["Init"; "Logic"] "eq")
let refl_equal_ref = lazy (init_reference ["Init"; "Logic"] "refl_equal")
let ex_ind = lazy (init_constant ["Init"; "Logic"] "ex")
let ex_intro = lazy (init_reference ["Init"; "Logic"] "ex_intro")
let proj1 = lazy (init_constant ["Init"; "Logic"] "proj1")
let proj2 = lazy (init_constant ["Init"; "Logic"] "proj2")
let boolind = lazy (init_constant ["Init"; "Datatypes"] "bool")
let sumboolind = lazy (init_constant ["Init"; "Specif"] "sumbool")
let natind = lazy (init_constant ["Init"; "Datatypes"] "nat")
let intind = lazy (init_constant ["ZArith"; "binint"] "Z")
let existSind = lazy (init_constant ["Init"; "Specif"] "sigS")
let existS = lazy (build_sigma_type ())
let prod = lazy (build_prod ())
(* orders *)
let well_founded = lazy (init_constant ["Init"; "Wf"] "well_founded")
let fix = lazy (init_constant ["Init"; "Wf"] "Fix")
let acc = lazy (init_constant ["Init"; "Wf"] "Acc")
let acc_inv = lazy (init_constant ["Init"; "Wf"] "Acc_inv")
let extconstr = Constrextern.extern_constr true (Global.env ())
let extsort s = Constrextern.extern_constr true (Global.env ()) (mkSort s)
open Pp
let my_print_constr = Termops.print_constr_env
let my_print_constr_expr = Ppconstr.pr_constr_expr
let my_print_context = Termops.print_rel_context
let my_print_named_context = Termops.print_named_context
let my_print_env = Termops.print_env
let my_print_rawconstr = Printer.pr_rawconstr_env
let my_print_evardefs = Evd.pr_evar_defs
let my_print_tycon_type = Evarutil.pr_tycon_type
let debug_level = 1
let debug_on = true
let debug n s =
if debug_on then
if !Options.debug && n >= debug_level then
msgnl s
else ()
else ()
let debug_msg n s =
if debug_on then
if !Options.debug && n >= debug_level then s
else mt ()
else mt ()
let trace s =
if debug_on then
if !Options.debug && debug_level > 0 then msgnl s
else ()
else ()
let wf_relations = Hashtbl.create 10
let std_relations () =
let add k v = Hashtbl.add wf_relations k v in
add (init_constant ["Init"; "Peano"] "lt")
(lazy (init_constant ["Arith"; "Wf_nat"] "lt_wf"))
let std_relations = Lazy.lazy_from_fun std_relations
type binders = Topconstr.local_binder list
let app_opt c e =
match c with
Some constr -> constr e
| None -> e
let print_args env args =
Array.fold_right (fun a acc -> my_print_constr env a ++ spc () ++ acc) args (str "")
let make_existential loc env isevars c =
let evar = Evarutil.e_new_evar isevars env ~src:(loc, QuestionMark) c in
let (key, args) = destEvar evar in
(try debug 2 (str "Constructed evar " ++ int key ++ str " applied to args: " ++
print_args env args) with _ -> ());
evar
let make_existential_expr loc env c =
let key = Evarutil.new_untyped_evar () in
let evar = Topconstr.CEvar (loc, key) in
debug 2 (str "Constructed evar " ++ int key);
evar
let string_of_hole_kind = function
| ImplicitArg _ -> "ImplicitArg"
| BinderType _ -> "BinderType"
| QuestionMark -> "QuestionMark"
| CasesType -> "CasesType"
| InternalHole -> "InternalHole"
| TomatchTypeParameter _ -> "TomatchTypeParameter"
let non_instanciated_map env evd =
let evm = evars_of !evd in
List.fold_left
(fun evm (key, evi) ->
let (loc,k) = evar_source key !evd in
debug 2 (str "evar " ++ int key ++ str " has kind " ++
str (string_of_hole_kind k));
match k with
QuestionMark -> Evd.add evm key evi
| _ ->
debug 2 (str " and is an implicit");
Pretype_errors.error_unsolvable_implicit loc env evm k)
Evd.empty (Evarutil.non_instantiated evm)
let global_kind = Decl_kinds.IsDefinition Decl_kinds.Definition
let goal_kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Definition
let global_proof_kind = Decl_kinds.IsProof Decl_kinds.Lemma
let goal_proof_kind = Decl_kinds.Global, Decl_kinds.Proof Decl_kinds.Lemma
let global_fix_kind = Decl_kinds.IsDefinition Decl_kinds.Fixpoint
let goal_fix_kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Fixpoint
open Tactics
open Tacticals
let id x = x
let filter_map f l =
let rec aux acc = function
hd :: tl -> (match f hd with Some t -> aux (t :: acc) tl
| None -> aux acc tl)
| [] -> List.rev acc
in aux [] l
let build_dependent_sum l =
let rec aux names conttac conttype = function
(n, t) :: ((_ :: _) as tl) ->
let hyptype = substl names t in
trace (spc () ++ str ("treating evar " ^ string_of_id n));
(try trace (str " assert: " ++ my_print_constr (Global.env ()) hyptype)
with _ -> ());
let tac = assert_tac true (Name n) hyptype in
let conttac =
(fun cont ->
conttac
(tclTHENS tac
([intros;
(tclTHENSEQ
[constructor_tac (Some 1) 1
(Rawterm.ImplicitBindings [mkVar n]);
cont]);
])))
in
let conttype =
(fun typ ->
let tex = mkLambda (Name n, t, typ) in
conttype
(mkApp (Lazy.force ex_ind, [| t; tex |])))
in
aux (mkVar n :: names) conttac conttype tl
| (n, t) :: [] ->
(conttac intros, conttype t)
| [] -> raise (Invalid_argument "build_dependent_sum")
in aux [] id id (List.rev l)
open Proof_type
open Tacexpr
let mkProj1 a b c =
mkApp (Lazy.force proj1, [| a; b; c |])
let mkProj2 a b c =
mkApp (Lazy.force proj2, [| a; b; c |])
let mk_ex_pi1 a b c =
mkApp (Lazy.force ex_pi1, [| a; b; c |])
let mk_ex_pi2 a b c =
mkApp (Lazy.force ex_pi2, [| a; b; c |])
let mkSubset name typ prop =
mkApp ((Lazy.force sig_).typ,
[| typ; mkLambda (name, typ, prop) |])
let and_tac l hook =
let andc = Coqlib.build_coq_and () in
let rec aux ((accid, goal, tac, extract) as acc) = function
| [] -> (* Singleton *) acc
| (id, x, elgoal, eltac) :: tl ->
let tac' = tclTHEN simplest_split (tclTHENLIST [tac; eltac]) in
let proj = fun c -> mkProj2 goal elgoal c in
let extract = List.map (fun (id, x, y, f) -> (id, x, y, (fun c -> f (mkProj1 goal elgoal c)))) extract in
aux ((string_of_id id) ^ "_" ^ accid, mkApp (andc, [| goal; elgoal |]), tac',
(id, x, elgoal, proj) :: extract) tl
in
let and_proof_id, and_goal, and_tac, and_extract =
match l with
| [] -> raise (Invalid_argument "and_tac: empty list of goals")
| (hdid, x, hdg, hdt) :: tl ->
aux (string_of_id hdid, hdg, hdt, [hdid, x, hdg, (fun c -> c)]) tl
in
let and_proofid = id_of_string (and_proof_id ^ "_and_proof") in
Command.start_proof and_proofid goal_kind and_goal
(hook (fun c -> List.map (fun (id, x, t, f) -> (id, x, t, f c)) and_extract));
trace (str "Started and proof");
Pfedit.by and_tac;
trace (str "Applied and tac")
let destruct_ex ext ex =
let rec aux c acc =
match kind_of_term c with
App (f, args) ->
(match kind_of_term f with
Ind i when i = Term.destInd (Lazy.force ex_ind) && Array.length args = 2 ->
let (dom, rng) =
try (args.(0), args.(1))
with _ -> assert(false)
in
let pi1 = (mk_ex_pi1 dom rng acc) in
let rng_body =
match kind_of_term rng with
Lambda (_, _, t) -> subst1 pi1 t
| t -> rng
in
pi1 :: aux rng_body (mk_ex_pi2 dom rng acc)
| _ -> [acc])
| _ -> [acc]
in aux ex ext
open Rawterm
let rec concatMap f l =
match l with
hd :: tl -> f hd @ concatMap f tl
| [] -> []
let list_mapi f =
let rec aux i = function
hd :: tl -> f i hd :: aux (succ i) tl
| [] -> []
in aux 0
(*
let make_discr (loc, po, tml, eqns) =
let mkHole = RHole (dummy_loc, InternalHole) in
let rec vars_of_pat = function
RPatVar (loc, n) -> (match n with Anonymous -> [] | Name n -> [n])
| RPatCstr (loc, csrt, pats, _) ->
concatMap vars_of_pat pats
in
let rec constr_of_pat l = function
RPatVar (loc, n) ->
(match n with
Anonymous ->
let n = next_name_away_from "x" l in
RVar n, (n :: l)
| Name n -> RVar n, l)
| RPatCstr (loc, csrt, pats, _) ->
let (args, vars) =
List.fold_left
(fun (args, vars) x ->
let c, vars = constr_of_pat vars x in
c :: args, vars)
([], l) pats
in
RApp ((RRef (dummy_loc, ConstructRef cstr)), args), vars
in
let rec constr_of_pat l = function
RPatVar (loc, n) ->
(match n with
Anonymous ->
let n = next_name_away_from "x" l in
RVar n, (n :: l)
| Name n -> RVar n, l)
| RPatCstr (loc, csrt, pats, _) ->
let (args, vars) =
List.fold_left
(fun (args, vars) x ->
let c, vars = constr_of_pat vars x in
c :: args, vars)
([], l) pats
in
RApp ((RRef (dummy_loc, ConstructRef cstr)), args), vars
in
let constrs_of_pats v l =
List.fold_left
(fun (v, acc) x ->
let x', v' = constr_of_pat v x in
(l', v' :: acc))
(v, []) l
in
let rec pat_of_pat l = function
RPatVar (loc, n) ->
let n', l = match n with
Anonymous ->
let n = next_name_away_from "x" l in
n, n :: l
| Name n -> n, n :: l
in
RPatVar (loc, Name n'), l
| RPatCstr (loc, cstr, pats, (loc, alias)) ->
let args, vars, s =
List.fold_left (fun (args, vars) x ->
let pat', vars = pat_of_pat vars pat in
pat' :: args, vars)
([], alias :: l) pats
in RPatCstr (loc, cstr, args, (loc, alias)), vars
in
let pats_of_pats l =
List.fold_left
(fun (v, acc) x ->
let x', v' = pat_of_pat v x in
(v', x' :: acc))
([], []) l
in
let eq_of_pat p used c =
let constr, vars' = constr_of_pat used p in
let eq = RApp (dummy_loc, RRef (dummy_loc, Lazy.force eqind_ref), [mkHole; constr; c]) in
vars', eq
in
let eqs_of_pats ps used cstrs =
List.fold_left2
(fun (vars, eqs) pat c ->
let (vars', eq) = eq_of_pat pat c in
match eqs with
None -> Some eq
| Some eqs ->
Some (RApp (dummy_loc, RRef (dummy_loc, Lazy.force and_ref), [eq, eqs])))
(used, None) ps cstrs
in
let quantify c l =
List.fold_left
(fun acc name -> RProd (dummy_loc, name, mkHole, acc))
c l
in
let quantpats =
List.fold_left
(fun (acc, pats) ((loc, idl, cpl, c) as x) ->
let vars, cpl = pats_of_pats cpl in
let l', constrs = constrs_of_pats vars cpl in
let discrs =
List.map (fun (_, _, cpl', _) ->
let qvars, eqs = eqs_of_pats cpl' l' constrs in
let neg = RApp (dummy_loc, RRef (dummy_loc, Lazy.force not_ref), [out_some eqs]) in
let pat_ineq = quantify qvars neg in
)
pats in
(x, pat_ineq))
in
List.fold_left
(fun acc ((loc, idl, cpl, c0) pat) ->
let c' =
List.fold_left
(fun acc (n, t) ->
RLambda (dummy_loc, n, mkHole, acc))
c eqs_types
in (loc, idl, cpl, c'))
eqns
i
*)
let rewrite_cases_aux (loc, po, tml, eqns) =
let tml = list_mapi (fun i (c, (n, opt)) -> c,
((match n with
Name id -> (match c with
| RVar (_, id') when id = id' ->
Name (id_of_string (string_of_id id ^ "'"))
| _ -> n)
| Anonymous -> Name (id_of_string ("x" ^ string_of_int i))),
opt)) tml
in
let mkHole = RHole (dummy_loc, InternalHole) in
let mkeq c n = RApp (dummy_loc, RRef (dummy_loc, (Lazy.force eqind_ref)),
[mkHole; c; n])
in
let eqs_types =
List.map
(fun (c, (n, _)) ->
let id = match n with Name id -> id | _ -> assert false in
let heqid = id_of_string ("Heq" ^ string_of_id id) in
Name heqid, mkeq c (RVar (dummy_loc, id)))
tml
in
let po =
List.fold_right
(fun (n,t) acc ->
RProd (dummy_loc, Anonymous, t, acc))
eqs_types (match po with
Some e -> e
| None -> mkHole)
in
let eqns =
List.map (fun (loc, idl, cpl, c) ->
let c' =
List.fold_left
(fun acc (n, t) ->
RLambda (dummy_loc, n, mkHole, acc))
c eqs_types
in (loc, idl, cpl, c'))
eqns
in
let mk_refl_equal c = RApp (dummy_loc, RRef (dummy_loc, Lazy.force refl_equal_ref),
[mkHole; c])
in
let refls = List.map (fun (c, _) -> mk_refl_equal c) tml in
let case = RCases (loc,Some po,tml,eqns) in
let app = RApp (dummy_loc, case, refls) in
app
let rec rewrite_cases c =
match c with
RCases _ -> let c' = map_rawconstr rewrite_cases c in
(match c' with
| RCases (x, y, z, w) -> rewrite_cases_aux (x,y,z,w)
| _ -> assert(false))
| _ -> map_rawconstr rewrite_cases c
let rewrite_cases env c =
let c' = rewrite_cases c in
let _ = trace (str "Rewrote cases: " ++ spc () ++ my_print_rawconstr env c') in
c'
let list_mapi f =
let rec aux i = function
hd :: tl -> f i hd :: aux (succ i) tl
| [] -> []
in aux 0
open Rawterm
let rewrite_cases_aux (loc, po, tml, eqns) =
let tml' = list_mapi (fun i (c, (n, opt)) -> c,
((match n with
Name id -> (match c with
| RVar (_, id') when id = id' ->
id, (id_of_string (string_of_id id ^ "Heq_id"))
| RVar (_, id') ->
id', id
| _ -> id_of_string (string_of_id id ^ "Heq_id"), id)
| Anonymous ->
let str = "Heq_id" ^ string_of_int i in
id_of_string str, id_of_string (str ^ "'")),
opt)) tml
in
let mkHole = RHole (dummy_loc, InternalHole) in
let mkCoerceCast c = RCast (dummy_loc, c, CastCoerce, mkHole) in
let mkeq c n = RApp (dummy_loc, RRef (dummy_loc, (Lazy.force eqind_ref)),
[mkHole; c; n])
in
let eqs_types =
List.map
(fun (c, ((id, id'), _)) ->
let heqid = id_of_string ("Heq" ^ string_of_id id) in
Name heqid, mkeq (RVar (dummy_loc, id')) c)
tml'
in
let po =
List.fold_right
(fun (n,t) acc ->
RProd (dummy_loc, Anonymous, t, acc))
eqs_types (match po with
Some e -> e
| None -> mkHole)
in
let eqns =
List.map (fun (loc, idl, cpl, c) ->
let c' =
List.fold_left
(fun acc (n, t) ->
RLambda (dummy_loc, n, mkHole, acc))
c eqs_types
in (loc, idl, cpl, c'))
eqns
in
let mk_refl_equal c = RApp (dummy_loc, RRef (dummy_loc, Lazy.force refl_equal_ref),
[mkHole; c])
in
let refls = List.map (fun (c, ((id, _), _)) -> mk_refl_equal (mkCoerceCast c)) tml' in
let tml'' = List.map (fun (c, ((id, id'), opt)) -> c, (Name id', opt)) tml' in
let case = RCases (loc,Some po,tml'',eqns) in
let app = RApp (dummy_loc, case, refls) in
(* let letapp = List.fold_left (fun acc (c, ((id, id'), opt)) -> RLetIn (dummy_loc, Name id, c, acc)) *)
(* app tml' *)
(* in *)
app
let rec rewrite_cases c =
match c with
RCases _ -> let c' = map_rawconstr rewrite_cases c in
(match c' with
| RCases (x, y, z, w) -> rewrite_cases_aux (x,y,z,w)
| _ -> assert(false))
| _ -> map_rawconstr rewrite_cases c
let rewrite_cases env c =
let c' = rewrite_cases c in
let _ = trace (str "Rewrote cases: " ++ spc () ++ my_print_rawconstr env c') in
c'
let id_of_name = function
Name n -> n
| Anonymous -> raise (Invalid_argument "id_of_name")
let definition_message id =
Options.if_verbose message ((string_of_id id) ^ " is defined")
let recursive_message v =
match Array.length v with
| 0 -> error "no recursive definition"
| 1 -> (Printer.pr_global v.(0) ++ str " is recursively defined")
| _ -> hov 0 (prvect_with_sep pr_coma Printer.pr_global v ++
spc () ++ str "are recursively defined")
(* Solve an obligation using tactics, return the corresponding proof term *)
let solve_by_tac ev t =
debug 1 (str "Solving goal using tactics: " ++ Evd.pr_evar_info ev);
let goal = Proof_trees.mk_goal ev.evar_hyps ev.evar_concl None in
let ts = Tacmach.mk_pftreestate goal in
let solved_state = Tacmach.solve_pftreestate t ts in
let c = Tacmach.extract_pftreestate solved_state in
debug 1 (str "Term constructed in solve by tac: " ++ my_print_constr (Global.env ()) c);
c
let rec string_of_list sep f = function
[] -> ""
| x :: [] -> f x
| x :: ((y :: _) as tl) -> f x ^ sep ^ string_of_list sep f tl
let string_of_intset d =
string_of_list "," string_of_int (Intset.elements d)
|