1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Names
open Term
open Reductionops
open Environ
open Typeops
open Pretype_errors
open Classops
open Recordops
open Evarutil
open Evarconv
open Retyping
open Evd
open Global
open Scoq
open Coqlib
open Printer
open Subtac_errors
open Context
open Eterm
open Pp
let pair_of_array a = (a.(0), a.(1))
let make_name s = Name (id_of_string s)
exception NoCoercion
let rec disc_subset x =
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Ind i ->
let len = Array.length l in
let sig_ = Lazy.force sig_ in
if len = 2 && i = Term.destInd sig_.typ
then
let (a, b) = pair_of_array l in
Some (a, b)
else None
| _ -> None)
| _ -> None
and disc_exist env x =
trace (str "Disc_exist: " ++ my_print_constr env x);
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Construct c ->
if c = Term.destConstruct (Lazy.force sig_).intro
then Some (l.(0), l.(1), l.(2), l.(3))
else None
| _ -> None)
| _ -> None
let disc_proj_exist env x =
trace (str "disc_proj_exist: " ++ my_print_constr env x);
match kind_of_term x with
| App (c, l) ->
(if Term.eq_constr c (Lazy.force sig_).proj1
&& Array.length l = 3
then disc_exist env l.(2)
else None)
| _ -> None
let sort_rel s1 s2 =
match s1, s2 with
Prop Pos, Prop Pos -> Prop Pos
| Prop Pos, Prop Null -> Prop Null
| Prop Null, Prop Null -> Prop Null
| Prop Null, Prop Pos -> Prop Pos
| Type _, Prop Pos -> Prop Pos
| Type _, Prop Null -> Prop Null
| _, Type _ -> s2
let rec mu env isevars t =
let rec aux v =
match disc_subset v with
Some (u, p) ->
let f, ct = aux u in
(Some (fun x ->
app_opt f (mkApp ((Lazy.force sig_).proj1,
[| u; p; x |]))),
ct)
| None -> (None, t)
in aux t
and coerce loc env nonimplicit isevars (x : Term.constr) (y : Term.constr)
: (Term.constr -> Term.constr) option
=
let rec coerce_unify env x y =
if e_cumul env isevars x y then None
else coerce' env x y (* head recutions needed *)
and coerce' env x y : (Term.constr -> Term.constr) option =
let subco () = subset_coerce env x y in
trace (str "Coercion from " ++ (my_print_constr env x) ++
str " to "++ my_print_constr env y);
match (kind_of_term x, kind_of_term y) with
| Sort s, Sort s' ->
(match s, s' with
Prop x, Prop y when x = y -> None
| Prop _, Type _ -> None
| Type x, Type y when x = y -> None (* false *)
| _ -> subco ())
| Prod (name, a, b), Prod (name', a', b') ->
let c1 = coerce_unify env a' a in
let env' = push_rel (name', None, a') env in
let c2 = coerce_unify env' b b' in
(match c1, c2 with
None, None -> failwith "subtac.coerce': Should have detected equivalence earlier"
| _, _ ->
Some
(fun f ->
mkLambda (name', a',
app_opt c2
(mkApp (Term.lift 1 f,
[| app_opt c1 (mkRel 1) |])))))
| App (c, l), App (c', l') ->
(match kind_of_term c, kind_of_term c' with
Ind i, Ind i' ->
let len = Array.length l in
let existS = Lazy.force existS in
if len = Array.length l' && len = 2
&& i = i' && i = Term.destInd existS.typ
then
begin (* Sigma types *)
debug 1 (str "In coerce sigma types");
let (a, pb), (a', pb') =
pair_of_array l, pair_of_array l'
in
let c1 = coerce_unify env a a' in
let remove_head c =
let (_, _, x) = Term.destProd c in
x
in
let b, b' = remove_head pb, remove_head pb' in
let env' = push_rel (make_name "x", None, a) env in
let c2 = coerce_unify env' b b' in
match c1, c2 with
None, None -> None
| _, _ ->
Some
(fun x ->
let x, y =
app_opt c1 (mkApp (existS.proj1,
[| a; pb; x |])),
app_opt c2 (mkApp (existS.proj2,
[| a; pb'; x |]))
in
mkApp (existS.intro, [| x ; y |]))
end
else subco ()
| _ -> subco ())
| _, _ -> subco ()
and subset_coerce env x y =
match disc_subset x with
Some (u, p) ->
let c = coerce_unify env u y in
let f x =
app_opt c (mkApp ((Lazy.force sig_).proj1,
[| u; p; x |]))
in Some f
| None ->
match disc_subset y with
Some (u, p) ->
let c = coerce_unify env x u in
Some
(fun x ->
let cx = app_opt c x in
let evar = make_existential dummy_loc env nonimplicit isevars (mkApp (p, [| cx |]))
in
(mkApp
((Lazy.force sig_).intro,
[| u; p; cx; evar |])))
| None -> raise NoCoercion
in coerce_unify env x y
let coerce_itf loc env nonimplicit isevars hj c1 =
let {uj_val = v; uj_type = t} = hj in
let evars = ref isevars in
let coercion = coerce loc env nonimplicit evars t c1 in
!evars, {uj_val = app_opt coercion v;
uj_type = t}
(* Taken from pretyping/coercion.ml *)
(* Typing operations dealing with coercions *)
let class_of1 env sigma t = class_of env sigma (nf_evar sigma t)
(* Here, funj is a coercion therefore already typed in global context *)
let apply_coercion_args env argl funj =
let rec apply_rec acc typ = function
| [] -> { uj_val = applist (j_val funj,argl);
uj_type = typ }
| h::restl ->
(* On devrait pouvoir s'arranger pour qu'on n'ait pas à faire hnf_constr *)
match kind_of_term (whd_betadeltaiota env Evd.empty typ) with
| Prod (_,c1,c2) ->
(* Typage garanti par l'appel à app_coercion*)
apply_rec (h::acc) (subst1 h c2) restl
| _ -> anomaly "apply_coercion_args"
in
apply_rec [] funj.uj_type argl
exception NoCoercion
(* appliquer le chemin de coercions de patterns p *)
let apply_pattern_coercion loc pat p =
List.fold_left
(fun pat (co,n) ->
let f i = if i<n then Rawterm.PatVar (loc, Anonymous) else pat in
Rawterm.PatCstr (loc, co, list_tabulate f (n+1), Anonymous))
pat p
(* raise Not_found if no coercion found *)
let inh_pattern_coerce_to loc pat ind1 ind2 =
let i1 = inductive_class_of ind1 in
let i2 = inductive_class_of ind2 in
let p = lookup_pattern_path_between (i1,i2) in
apply_pattern_coercion loc pat p
(* appliquer le chemin de coercions p à hj *)
let apply_coercion env p hj typ_cl =
try
fst (List.fold_left
(fun (ja,typ_cl) i ->
let fv,isid = coercion_value i in
let argl = (class_args_of typ_cl)@[ja.uj_val] in
let jres = apply_coercion_args env argl fv in
(if isid then
{ uj_val = ja.uj_val; uj_type = jres.uj_type }
else
jres),
jres.uj_type)
(hj,typ_cl) p)
with _ -> anomaly "apply_coercion"
let inh_app_fun env isevars j =
let t = whd_betadeltaiota env (evars_of isevars) j.uj_type in
match kind_of_term t with
| Prod (_,_,_) -> (isevars,j)
| Evar ev when not (is_defined_evar isevars ev) ->
let (isevars',t) = define_evar_as_arrow isevars ev in
(isevars',{ uj_val = j.uj_val; uj_type = t })
| _ ->
(try
let t,i1 = class_of1 env (evars_of isevars) j.uj_type in
let p = lookup_path_to_fun_from i1 in
(isevars,apply_coercion env p j t)
with Not_found -> (isevars,j))
let inh_tosort_force loc env isevars j =
try
let t,i1 = class_of1 env (evars_of isevars) j.uj_type in
let p = lookup_path_to_sort_from i1 in
let j1 = apply_coercion env p j t in
(isevars,type_judgment env (j_nf_evar (evars_of isevars) j1))
with Not_found ->
error_not_a_type_loc loc env (evars_of isevars) j
let inh_coerce_to_sort loc env isevars j =
let typ = whd_betadeltaiota env (evars_of isevars) j.uj_type in
match kind_of_term typ with
| Sort s -> (isevars,{ utj_val = j.uj_val; utj_type = s })
| Evar ev when not (is_defined_evar isevars ev) ->
let (isevars',s) = define_evar_as_sort isevars ev in
(isevars',{ utj_val = j.uj_val; utj_type = s })
| _ ->
inh_tosort_force loc env isevars j
let inh_coerce_to_fail env isevars c1 hj =
let hj' =
try
let t1,i1 = class_of1 env (evars_of isevars) c1 in
let t2,i2 = class_of1 env (evars_of isevars) hj.uj_type in
let p = lookup_path_between (i2,i1) in
apply_coercion env p hj t2
with Not_found -> raise NoCoercion
in
try (the_conv_x_leq env hj'.uj_type c1 isevars, hj')
with Reduction.NotConvertible -> raise NoCoercion
let rec inh_conv_coerce_to_fail env isevars hj c1 =
let {uj_val = v; uj_type = t} = hj in
try (the_conv_x_leq env t c1 isevars, hj)
with Reduction.NotConvertible ->
(try
inh_coerce_to_fail env isevars c1 hj
with NoCoercion ->
(match kind_of_term (whd_betadeltaiota env (evars_of isevars) t),
kind_of_term (whd_betadeltaiota env (evars_of isevars) c1) with
| Prod (_,t1,t2), Prod (name,u1,u2) ->
let v' = whd_betadeltaiota env (evars_of isevars) v in
let (evd',b) =
match kind_of_term v' with
| Lambda (_,v1,v2) ->
(try the_conv_x env v1 u1 isevars, true (* leq v1 u1? *)
with Reduction.NotConvertible -> (isevars, false))
| _ -> (isevars,false) in
if b
then
let (x,v1,v2) = destLambda v' in
let env1 = push_rel (x,None,v1) env in
let (evd'',h2) = inh_conv_coerce_to_fail env1 evd'
{uj_val = v2; uj_type = t2 } u2 in
(evd'',{ uj_val = mkLambda (x, v1, h2.uj_val);
uj_type = mkProd (x, v1, h2.uj_type) })
else
(* Mismatch on t1 and u1 or not a lambda: we eta-expand *)
(* we look for a coercion c:u1->t1 s.t. [name:u1](v' (c x)) *)
(* has type (name:u1)u2 (with v' recursively obtained) *)
let name = (match name with
| Anonymous -> Name (id_of_string "x")
| _ -> name) in
let env1 = push_rel (name,None,u1) env in
let (evd',h1) =
inh_conv_coerce_to_fail env1 isevars
{uj_val = mkRel 1; uj_type = (lift 1 u1) }
(lift 1 t1) in
let (evd'',h2) = inh_conv_coerce_to_fail env1 evd'
{ uj_val = mkApp (lift 1 v, [|h1.uj_val|]);
uj_type = subst1 h1.uj_val t2 }
u2
in
(evd'',
{ uj_val = mkLambda (name, u1, h2.uj_val);
uj_type = mkProd (name, u1, h2.uj_type) })
| _ -> raise NoCoercion))
(* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *)
let inh_conv_coerce_to loc env nonimplicit isevars cj t =
let (evd',cj') =
try
inh_conv_coerce_to_fail env isevars cj t
with NoCoercion ->
try
coerce_itf loc env nonimplicit isevars cj t
with NoCoercion ->
let sigma = evars_of isevars in
error_actual_type_loc loc env sigma cj t
in
(evd',{ uj_val = cj'.uj_val; uj_type = t })
|