1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
open Term
open Evarutil
open Evd
open Libnames
open Global
open Names
open Scoq
open Coqlib
open Pp
open Printer
open Subtac_errors
open Util
open Rawterm
open Context
open Eterm
(* match t with
| RRef(loc, gr) ->
| RVar(loc, id) ->
| REvar(loc, e_key, arglopt) ->
| RPatVar(loc, (b * pvar)) ->
| RApp(loc, fn, args) ->
| RLambda(loc, name, typ, body) ->
| RProd(loc, name, dom, codom) ->
| RLetIn(loc, var, def, body) ->
| RLetTuple(loc, names, (name, expr), def, body) ->
| RIf(loc, cond, (name, expr), bodyl, bodyr) ->
| RRec(loc, fix_kind, identifiersarr, rawdecllistarray,
rawconstrarray, rawconstrarray) ->
| RSort(loc, rsort) ->
| RHole(loc, hole_kind) ->
| RCast(loc, expr, cast_kind, toexpr) ->
| RCases _ (* of loc * rawconstr option *
(rawconstr * (name * (loc * inductive * name list) option)) list *
(loc * identifier list * cases_pattern list * rawconstr) list *) ->
| RDynamic(loc, dynobj) ->
*)
type recursion_info = {
arg_name: identifier;
arg_type: types; (* A *)
wf_relation: constr; (* R : A -> A -> Prop *)
wf_proof: constr; (* : well_founded R *)
f_type: types; (* f: A -> Set *)
f_fulltype: types; (* Type with argument and wf proof product first *)
}
type prog_info = {
evd : evar_defs ref;
mutable evm: evar_map;
rec_info: recursion_info option;
}
let my_print_constr env ctx term =
Termops.print_constr_env (env_of_ctx env ctx) term
let my_print_context env ctx =
Termops.print_rel_context (env_of_ctx env ctx)
let my_print_rawconstr env ctx term =
Printer.pr_rawconstr_env (env_of_ctx env ctx) term
let filter_defs l = List.filter (fun (_, c, _) -> c = None) l
let evar_args ctx =
let rec aux acc i = function
(_, c, _) :: tl ->
(match c with
| None -> aux (mkRel i :: acc) (succ i) tl
| Some _ -> aux acc (succ i) tl)
| [] -> acc
in Array.of_list (aux [] 1 ctx)
let evar_ctx prog_info ctx =
let ctx' =
match prog_info.rec_info with
Some ri ->
let len = List.length ctx in
assert(len >= 2);
let rec aux l acc = function
0 ->
(match l with
(id, _, recf) :: arg :: [] -> arg :: (id, None, ri.f_fulltype) :: acc
| _ -> assert(false))
| n -> (match l with
hd :: tl -> aux tl (hd :: acc) (pred n)
| _ -> assert(false))
in
List.rev (aux ctx [] (len - 2))
| None -> ctx
in filter_defs ctx'
let lookup_local env ctx (loc, id) =
try
let name = Name id in
let index, term, typ = Context.assoc_and_index name ctx in
let index = succ index in
let typ' = lift index typ in
debug 3 (str "Resolved " ++ str (string_of_id id) ++ str " locally as rel " ++ int index ++ str " : " ++
my_print_constr env ctx typ' ++ str " in context: " ++
my_print_context env ctx);
mkRel index, typ'
with Not_found ->
try
let (n,typ) = Termops.lookup_rel_id id (Environ.rel_context env) in
let index = List.length ctx + n in
mkRel index, (lift index) typ
with Not_found ->
try
let (_,_,typ) = Environ.lookup_named id env in
mkVar id, typ
with Not_found ->
Pretype_errors.error_var_not_found_loc loc id
let pair_of_array a = (a.(0), a.(1))
let make_name s = Name (id_of_string s)
let app_opt c e =
match c with
Some constr -> constr e
| None -> e
let rec disc_subset x =
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Ind i ->
let len = Array.length l in
let sig_ = Lazy.force sig_ in
if len = 2 && i = Term.destInd sig_.typ
then
let (a, b) = pair_of_array l in
Some (a, b)
else None
| _ -> None)
| _ -> None
and disc_exist env ctx x =
trace (str "Disc_exist: " ++ my_print_constr env ctx x);
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Construct c ->
if c = Term.destConstruct (Lazy.force sig_).intro
then Some (l.(0), l.(1), l.(2), l.(3))
else None
| _ -> None)
| _ -> None
let disc_proj_exist env ctx x =
trace (str "disc_proj_exist: " ++ my_print_constr env ctx x);
match kind_of_term x with
| App (c, l) ->
(if Term.eq_constr c (Lazy.force sig_).proj1
&& Array.length l = 3
then disc_exist env ctx l.(2)
else None)
| _ -> None
let sort_rel s1 s2 =
match s1, s2 with
Prop Pos, Prop Pos -> Prop Pos
| Prop Pos, Prop Null -> Prop Null
| Prop Null, Prop Null -> Prop Null
| Prop Null, Prop Pos -> Prop Pos
| Type _, Prop Pos -> Prop Pos
| Type _, Prop Null -> Prop Null
| _, Type _ -> s2
let rec mu prog_info env ctx t =
match disc_subset t with
Some (u, p) ->
let f, ct = mu prog_info env ctx u in
(Some (fun x ->
app_opt f (mkApp ((Lazy.force sig_).proj1,
[| u; p; x |]))),
ct)
| None -> (None, t)
and coerce prog_info env ctx (x : Term.constr) (y : Term.constr)
: (Term.constr -> Term.constr) option
=
let rec coerce_unify ctx etyp argtyp =
match kind_of_term etyp, kind_of_term argtyp with
Evar (ev, args), _ ->
let evm = evars_of !(prog_info.evd) in
(*if is_defined evm ev then
coerce' ctx etyp (existential_value evm (ev, args))
else ( *)
prog_info.evd := evar_define ev argtyp !(prog_info.evd);
debug 1 (str "Defining evar (evar to type) " ++ int ev ++ str " := " ++ my_print_constr env ctx argtyp);
None
| _, Evar (ev, args) ->
let evm = evars_of !(prog_info.evd) in
if is_defined evm ev then
coerce' ctx etyp (existential_value evm (ev, args))
else (
debug 1 (str "Defining evar (term to evar)" ++ int ev ++ str " := " ++ my_print_constr env ctx etyp);
prog_info.evd := evar_define ev etyp !(prog_info.evd);
None)
| _, _ -> coerce' ctx etyp argtyp
and coerce' ctx x y : (Term.constr -> Term.constr) option =
let subco () = subset_coerce ctx x y in
trace (str "Coercion from " ++ (my_print_constr env ctx x) ++
str " to "++ my_print_constr env ctx y);
match (kind_of_term x, kind_of_term y) with
| Sort s, Sort s' ->
(match s, s' with
Prop x, Prop y when x = y -> None
| Prop _, Type _ -> None
| Type x, Type y when x = y -> None (* false *)
| _ -> subco ())
| Prod (name, a, b), Prod (name', a', b') ->
let c1 = coerce_unify ctx a' a in
let c2 = coerce_unify ((name', None, a') :: ctx) b b' in
(match c1, c2 with
None, None -> None
| _, _ ->
Some
(fun f ->
mkLambda (name', a',
app_opt c2
(mkApp (Term.lift 1 f,
[| app_opt c1 (mkRel 1) |])))))
| App (c, l), App (c', l') ->
(match kind_of_term c, kind_of_term c' with
Ind i, Ind i' ->
let len = Array.length l in
let existS = Lazy.force existS in
if len = Array.length l' && len = 2
&& i = i' && i = Term.destInd existS.typ
then
begin (* Sigma types *)
debug 1 (str "In coerce sigma types");
let (a, pb), (a', pb') =
pair_of_array l, pair_of_array l'
in
let c1 = coerce_unify ctx a a' in
let remove_head c =
let (_, _, x) = Term.destProd c in
x
in
let b, b' = remove_head pb, remove_head pb' in
let ctx' = (make_name "x", None, a) :: ctx in
let c2 = coerce_unify ctx' b b' in
match c1, c2 with
None, None -> None
| _, _ ->
Some
(fun x ->
let x, y =
app_opt c1 (mkApp (existS.proj1,
[| a; pb; x |])),
app_opt c2 (mkApp (existS.proj2,
[| a; pb'; x |]))
in
mkApp (existS.intro, [| x ; y |]))
end
else subco ()
| _ -> subco ())
| _, _ -> subco ()
and subset_coerce ctx x y =
match disc_subset x with
Some (u, p) ->
let c = coerce_unify ctx u y in
let f x =
app_opt c (mkApp ((Lazy.force sig_).proj1,
[| u; p; x |]))
in Some f
| None ->
match disc_subset y with
Some (u, p) ->
let c = coerce_unify ctx x u in
let evarinfo x =
let cx = app_opt c x in
let pcx = mkApp (p, [| cx |]) in
let ctx', pcx' = subst_ctx ctx pcx in
cx, {
Evd.evar_concl = pcx';
Evd.evar_hyps =
Environ.val_of_named_context (evar_ctx prog_info ctx');
Evd.evar_body = Evd.Evar_empty;
}
in
Some
(fun x ->
let key = mknewexist () in
let cx, evi = evarinfo x in
prog_info.evm <- Evd.add prog_info.evm key evi;
(mkApp
((Lazy.force sig_).intro,
[| u; p; cx;
mkEvar (key, evar_args ctx) |])))
| None ->
(try
let cstrs = Reduction.conv (Global.env ()) x y
in
ignore(Univ.merge_constraints cstrs (Global.universes ()));
Some (fun x ->
mkCast (x, DEFAULTcast, y))
with
Reduction.NotConvertible ->
subtyping_error
(UncoercibleRewrite (my_print_constr env ctx x,
my_print_constr env ctx y))
| e -> raise e)
in
try ignore(Reduction.conv_leq (Global.env ()) x y); None
with Reduction.NotConvertible -> coerce_unify ctx x y (* head recutions needed *)
and interp prog_info env ctx t : constr * constr (* The term -> its coq translation, its coq (not algorithmic) type *) =
let error s = anomaly ("subtac.interp: " ^ s) in
debug 1 (str "Interpreting term: " ++ my_print_rawconstr env ctx t ++ str " in env : " ++
my_print_context env ctx);
let rec type_app ctx (locf, coqf, ftyp) (e : rawconstr) =
let coercef, support = mu prog_info env ctx ftyp in
let narg, argtyp, restyp =
try
match decompose_prod_n 1 support with
[x, y], z -> x, y, z
| _ -> typing_error (NonFunctionalApp (locf, my_print_constr env ctx coqf, my_print_constr env ctx support,
my_print_rawconstr env ctx e))
with _ -> typing_error (NonFunctionalApp (locf, my_print_constr env ctx coqf, my_print_constr env ctx support,
my_print_rawconstr env ctx e))
in
let coqe, etyp = aux ctx e in
let _ = debug 2 (str "Coercion for application: " ++
my_print_constr env ctx coqf ++ str " : " ++
my_print_constr env ctx ftyp ++ str " and " ++
my_print_constr env ctx coqe ++ str " : " ++
my_print_constr env ctx etyp)
in
let coercee = coerce prog_info env ctx etyp argtyp in
let coqe' = app_opt coercee coqe in
let restype' = Term.subst1 coqe' restyp in
let call =
let len = List.length ctx in
let cf = app_opt coercef coqf in
match prog_info.rec_info with
Some r ->
(match kind_of_term cf with
Rel i when i = (pred len) ->
debug 3 (str "Spotted recursive call!");
let ctx', proof =
subst_ctx ctx (mkApp (r.wf_relation,
[| coqe'; mkRel len |]))
in
let evarinfo =
{
Evd.evar_concl = proof;
Evd.evar_hyps =
Environ.val_of_named_context
(evar_ctx prog_info ctx');
Evd.evar_body = Evd.Evar_empty;
}
in
let key = mknewexist () in
prog_info.evm <- Evd.add prog_info.evm key evarinfo;
mkApp (cf, [| coqe'; mkEvar(key, evar_args ctx) |])
| _ -> mkApp (cf, [| coqe' |]))
| None -> mkApp (cf, [| coqe' |])
in
debug 2 (str "Term obtained after coercion (at application): " ++
Termops.print_constr_env (env_of_ctx env ctx) call);
call, restype'
and aux ctx = function
| RRef(loc, gr) ->
(match gr with
| VarRef var ->
let coqt = type_of_global gr in
mkVar var, coqt
| ConstRef const ->
let coqt = type_of_global gr in
mkConst const, coqt
| IndRef ind ->
let coqt = type_of_global gr in
mkInd ind, coqt
| ConstructRef constr ->
let coqt = type_of_global gr in
mkConstruct constr, coqt)
| RVar(loc, id) -> lookup_local env ctx (loc, id)
| RApp(loc, fn, args) as x ->
let loc = loc_of_rawconstr fn in
debug 1 (str "Interpreting application: " ++ my_print_rawconstr env ctx x);
let coqfn, fntyp = aux ctx fn in
(* let coqfn, fntyp, args =
match kind_of_term coqfn with
Ind i ->
let len = List.length args in
debug 1 (my_print_constr env ctx coqfn ++ str " inductive applied to " ++ int len ++ str " arguments: " ++
List.fold_left (fun acc arg -> acc ++ str " " ++ my_print_rawconstr env ctx arg) (str "") args
);
let sig_ = Lazy.force sig_ in
if len = 2 && i = Term.destInd sig_.typ
then
let b = match args with [a;b] -> b | _ -> error "Partially applied subset type constructor" in
let coqb, btyp = aux ctx b in
(match kind_of_term coqb with
| Lambda (n, t, b) ->
mkApp (coqfn, [|t; coqb|]), mkSort (mk_Set), []
| _ ->
debug 1 (my_print_constr env ctx btyp ++ str " is not a lambda") ;
error "Ill-typed subset type: ")
else if len = 3 && i = Term.destInd (Lazy.force eqind)
then
let b,c = match args with [a;b;c] -> b,c | _ -> error "Partially applied eq type constructor" in
let coqb, btyp = aux ctx b in
mkApp (coqfn, [|btyp; coqb|]), mkProd (Anonymous, btyp, mkSort (mk_Prop)), [c]
else (
debug 1 (str "Not an eq or sig: " ++ my_print_constr env ctx coqfn);
coqfn, fntyp, args)
| x ->
debug 1 (str "Not an inductive: " ++ my_print_constr env ctx coqfn);
coqfn, fntyp, args
in*)
let _, term, typ =
List.fold_left (fun (loc, coqfn, fntyp) (e : rawconstr) ->
let coqfn', fntyp' = type_app ctx (loc, coqfn, fntyp) e in
join_loc loc (loc_of_rawconstr e), coqfn', fntyp')
(loc, coqfn, fntyp) args
in term, typ
| RLambda(loc, name, argtyp, body) ->
let coqargtyp, argtyptyp = aux ctx argtyp in
let coqbody, bodytyp = aux ((name, None, coqargtyp) :: ctx) body in
let prod = mkProd (name, coqargtyp, bodytyp) in
(* Check it is well sorted *)
(*let coqprod, prodtyp = aux ctx prod in
if not (isSort prodtyp) then
typing_error (IllSorted (loc, my_print_constr env ctx prodtyp));*)
let coqlambda = mkLambda (name, coqargtyp, coqbody) in
(coqlambda, prod)
| RProd(loc, name, dom, codom) ->
let coqdom, domtyp = aux ctx dom in
let coqcodom, codomtyp = aux ((name, None, coqdom) :: ctx) codom in
let s1, s2 = destSort domtyp, destSort codomtyp in
let s3 = sort_rel s1 s2 in
mkProd (name, coqdom, coqcodom), mkSort s3
| RLetIn(loc, var, def, body) ->
let coqdef, deftyp = aux ctx def in
let coqbody, bodytyp = aux ((var, Some coqdef, deftyp) :: ctx) body in
mkLetIn (var, coqdef, deftyp, coqbody),
Term.subst1 coqdef bodytyp
| RLetTuple(loc, names, (name, expr), def, body) -> error "Let tuple : Not implemented"
| RIf(loc, cond, (name, expr), bodyl, bodyr) ->
error "If: not implemented"
| RRec(loc, fix_kind, identifiersarr, rawdecllistarray,
rawconstrarray, rawconstrarray2) ->
error "Rec : Not implemented"
| RSort(loc, rsort) ->
let x, y =
(match rsort with
RProp Pos -> mk_Set, type_0
| RProp Null -> mk_Prop, type_0
| RType None -> type_0, type_0
| RType (Some u) -> Type u, type_0)
in mkSort x, mkSort y
| RHole(loc, k) ->
let ty = Evarutil.e_new_evar prog_info.evd env ~src:(loc,InternalHole) (Termops.new_Type ()) in
(Evarutil.e_new_evar prog_info.evd env ~src:(loc,k) ty), ty
| RCast(loc, expr, cast_kind, toexpr) ->
let coqexpr, exprtyp = aux ctx expr in
let coqtoexpr, toexprtyp = aux ctx toexpr in
mkCast (coqexpr, cast_kind, coqtoexpr), toexprtyp
| RCases _ (* of loc * rawconstr option *
(rawconstr * (name * (loc * inductive * name list) option)) list *
(loc * identifier list * cases_pattern list * rawconstr) list *) ->
anomaly "Not implemented"
| REvar(loc, e_key, arglopt) ->
let evm = evars_of !(prog_info.evd) in
let evi = map evm e_key in
let args =
match arglopt with
Some l -> Array.of_list (List.map (fun e -> fst (aux ctx e)) l)
| None -> [||]
in
(match evi.evar_body with
Evar_defined v -> mkApp (v, args), evi.evar_concl
| _ ->
mkEvar (e_key, args), evi.evar_concl)
| RPatVar(loc, (b, pvar)) -> error "Found a pattern variable in a term to be typed"
| RDynamic(loc, d) ->
if (Dyn.tag d) = "constr" then
let c = Pretyping.constr_out d in
let j = (Retyping.get_type_of env Evd.empty c) in
j, c
else
user_err_loc (loc,"subtac.interp",(str "Not a constr tagged Dynamic"))
in aux ctx t
let global_kind = Decl_kinds.IsDefinition Decl_kinds.Definition
let goal_kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Definition
let make_fixpoint t id term =
let term' = mkLambda (Name id, t.f_fulltype, term) in
mkApp (Lazy.force fix,
[| t.arg_type; t.wf_relation; t.wf_proof; t.f_type;
mkLambda (Name t.arg_name, t.arg_type, term') |])
let merge_evms x y =
Evd.fold (fun ev evi evm -> Evd.add evm ev evi) x y
let subtac' recursive id env (s, t) =
check_required_library ["Coq";"Init";"Datatypes"];
check_required_library ["Coq";"Init";"Specif"];
try
let evm = Evd.empty in
let coqintern = Constrintern.intern_constr evm env in
let coqinterp = Constrintern.interp_constr evm env in
let s, t = coqintern s, coqintern t in
let prog_info = { evd = ref (Evd.create_evar_defs evm); evm = evm; rec_info = None } in
trace (str "Begin infer_type of given spec");
let (evs, coqs) = Pretyping.understand_tcc evm env s and (evt, coqt) = Pretyping.understand_tcc evm env t in
debug 1 (str "Coq understands as : " ++ my_print_constr env [] coqs ++ str " : " ++ my_print_constr env [] coqt);
let coqtype, prog_info, ctx =
match recursive with
Some (n, t, rel, proof) ->
let coqrel = coqinterp rel in
let t', ttyp = interp prog_info env [] (coqintern t) in
let namen = Name n in
let coqs, styp = interp prog_info env [namen, None, t'] s in
let ftype = mkProd (namen, t', coqs) in
let fulltype =
mkProd (namen, t',
mkProd(Anonymous,
mkApp (coqrel, [| mkRel 1; mkRel 2 |]),
Term.subst1 (mkRel 2) coqs))
in
let proof =
match proof with
ManualProof p -> (* TODO: Check that t is a proof of well_founded rel *)
coqinterp p
| AutoProof ->
(try Lazy.force (Hashtbl.find wf_relations coqrel)
with Not_found ->
msg_warning
(str "No proof found for relation "
++ my_print_constr env [] coqrel);
raise Not_found)
| ExistentialProof ->
let wf_rel = mkApp (Lazy.force well_founded, [| t'; coqrel |]) in
let key = mknewexist () in
prog_info.evm <- Evd.add prog_info.evm key
{ Evd.evar_concl = wf_rel;
Evd.evar_hyps = Environ.empty_named_context_val;
Evd.evar_body = Evd.Evar_empty };
mkEvar (key, [| |])
in
let prog_info =
let rec_info =
{ arg_name = n;
arg_type = t';
wf_relation = coqrel;
wf_proof = proof;
f_type = ftype;
f_fulltype = fulltype;
}
in { prog_info with rec_info = Some rec_info }
in
let coqctx =
[(Name id, None, ftype); (namen, None, t')]
in coqs, prog_info, coqctx
| None ->
let coqs, _ = interp prog_info env [] s in
coqs, prog_info, []
in
trace (str "Rewrite of spec done:" ++ my_print_constr env ctx coqtype);
let coqt, ttyp = interp prog_info env ctx t in
trace (str "Interpretation done:" ++ spc () ++
str "Interpreted term: " ++ my_print_constr env ctx coqt ++ spc () ++
str "Infered type: " ++ my_print_constr env ctx ttyp);
let coercespec = coerce prog_info env ctx ttyp coqtype in
trace (str "Specs coercion successfull");
let realt = app_opt coercespec coqt in
trace (str "Term Specs coercion successfull" ++
my_print_constr env ctx realt);
let realt =
match prog_info.rec_info with
Some t -> make_fixpoint t id realt
| None -> realt
in
let realt = Evarutil.whd_ise (evars_of !(prog_info.evd)) realt in
trace (str "Coq term" ++ my_print_constr env [] realt);
trace (str "Coq type" ++ my_print_constr env [] coqtype);
let evm = prog_info.evm in
(try trace (str "Original evar map: " ++ Evd.pr_evar_map evm);
with Not_found -> trace (str "Not found in pr_evar_map"));
let tac = Eterm.etermtac (evm, realt) in
msgnl (str "Starting proof");
Command.start_proof id goal_kind coqtype (fun _ _ -> ());
msgnl (str "Started proof");
Pfedit.by tac
with
| Typing_error e ->
msg_warning (str "Type error in Program tactic:");
let cmds =
(match e with
| NonFunctionalApp (loc, x, mux, e) ->
str "non functional application of term " ++
e ++ str " to function " ++ x ++ str " of (mu) type " ++ mux
| NonSigma (loc, t) ->
str "Term is not of Sigma type: " ++ t
| NonConvertible (loc, x, y) ->
str "Unconvertible terms:" ++ spc () ++
x ++ spc () ++ str "and" ++ spc () ++ y
| IllSorted (loc, t) ->
str "Term is ill-sorted:" ++ spc () ++ t
)
in msg_warning cmds
| Subtyping_error e ->
msg_warning (str "(Program tactic) Subtyping error:");
let cmds =
match e with
| UncoercibleInferType (loc, x, y) ->
str "Uncoercible terms:" ++ spc ()
++ x ++ spc () ++ str "and" ++ spc () ++ y
| UncoercibleInferTerm (loc, x, y, tx, ty) ->
str "Uncoercible terms:" ++ spc ()
++ tx ++ spc () ++ str "of" ++ spc () ++ str "type" ++ spc () ++ x
++ str "and" ++ spc() ++ ty ++ spc () ++ str "of" ++ spc () ++ str "type" ++ spc () ++ y
| UncoercibleRewrite (x, y) ->
str "Uncoercible terms:" ++ spc ()
++ x ++ spc () ++ str "and" ++ spc () ++ y
in msg_warning cmds
| e ->
msg_warning (str "Uncatched exception: " ++ str (Printexc.to_string e))
(*raise e*)
let subtac recursive id env (s, t) =
subtac' recursive id (Global.env ()) (s, t)
|