aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/setoid_ring/Ring_polynom.v
blob: af065ee9f3a66e434af53a029fe252df2d83b007 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Set Implicit Arguments.
Require Import Setoid.
Require Export BinList.
Require Import BinPos.
Require Import BinInt.
Require Export Ring_theory.

Import RingSyntax.

Section MakeRingPol.
 
 (* Ring elements *)     
 Variable R:Type.
 Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
 Variable req : R -> R -> Prop.
 
 (* Ring properties *)
 Variable Rsth : Setoid_Theory R req.
 Variable Reqe : ring_eq_ext radd rmul ropp req.
 Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.

 (* Coefficients *) 
 Variable C: Type.
 Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
 Variable ceqb : C->C->bool. 
 Variable phi : C -> R.
 Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
                                cO cI cadd cmul csub copp ceqb phi.


 (* R notations *)
 Notation "0" := rO. Notation "1" := rI.
 Notation "x + y" := (radd x y).  Notation "x * y " := (rmul x y).
 Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
 Notation "x == y" := (req x y).

 (* C notations *)		 
 Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
 Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
 Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).

 (* Usefull tactics *)		  
  Add Setoid R req Rsth as R_set1.
 Ltac rrefl := gen_reflexivity Rsth.
  Add Morphism radd : radd_ext.  exact (Radd_ext Reqe). Qed.
  Add Morphism rmul : rmul_ext.  exact (Rmul_ext Reqe). Qed.
  Add Morphism ropp : ropp_ext.  exact (Ropp_ext Reqe). Qed.
  Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
 Ltac rsimpl := gen_srewrite 0 1 radd rmul rsub ropp req Rsth Reqe ARth.
 Ltac add_push := gen_add_push radd Rsth Reqe ARth.
 Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.

 (* Definition of multivariable polynomials with coefficients in C :
    Type [Pol] represents [X1 ... Xn].
    The representation is Horner's where a [n] variable polynomial
    (C[X1..Xn]) is seen as a polynomial on [X1] which coefficients
    are polynomials with [n-1] variables (C[X2..Xn]).
    There are several optimisations to make the repr compacter:
    - [Pc c] is the constant polynomial of value c
       == c*X1^0*..*Xn^0
    - [Pinj j Q] is a polynomial constant w.r.t the [j] first variables.
        variable indices are shifted of j in Q.
       == X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn}
    - [PX P i Q] is an optimised Horner form of P*X^i + Q
        with P not the null polynomial
       == P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn}

    In addition:
    - polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden
      since they can be represented by the simpler form (PX P (i+j) Q)
    - (Pinj i (Pinj j P)) is (Pinj (i+j) P)
    - (Pinj i (Pc c)) is (Pc c)
 *)

 Inductive Pol : Type :=
  | Pc : C -> Pol 
  | Pinj : positive -> Pol -> Pol                   
  | PX : Pol -> positive -> Pol -> Pol.

 Definition P0 := Pc cO.
 Definition P1 := Pc cI.
 
 Fixpoint Peq (P P' : Pol) {struct P'} : bool := 
  match P, P' with
  | Pc c, Pc c' => c ?=! c'
  | Pinj j Q, Pinj j' Q' => 
    match Pcompare j j' Eq with
    | Eq => Peq Q Q' 
    | _ => false 
    end
  | PX P i Q, PX P' i' Q' =>
    match Pcompare i i' Eq with
    | Eq => if Peq P P' then Peq Q Q' else false
    | _ => false
    end
  | _, _ => false
  end.

 Notation " P ?== P' " := (Peq P P').

 Definition mkPinj j P :=
  match P with 
  | Pc _ => P
  | Pinj j' Q => Pinj ((j + j'):positive) Q
  | _ => Pinj j P
  end.

 Definition mkPX P i Q := 
  match P with
  | Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
  | Pinj _ _ => PX P i Q
  | PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
  end.
 
 (** Opposite of addition *)
 
 Fixpoint Popp (P:Pol) : Pol := 
  match P with
  | Pc c => Pc (-! c)
  | Pinj j Q => Pinj j (Popp Q)
  | PX P i Q => PX (Popp P) i (Popp Q)
  end.
 
 Notation "-- P" := (Popp P).

 (** Addition et subtraction *)
 
 Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c1 => Pc (c1 +! c)
  | Pinj j Q => Pinj j (PaddC Q c)
  | PX P i Q => PX P i (PaddC Q c)
  end.

 Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c1 => Pc (c1 -! c)
  | Pinj j Q => Pinj j (PsubC Q c)
  | PX P i Q => PX P i (PsubC Q c)
  end.

 Section PopI.

  Variable Pop : Pol -> Pol -> Pol.
  Variable Q : Pol.

  Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PaddC Q c)
   | Pinj j' Q' => 
     match ZPminus j' j with
     | Zpos k =>  mkPinj j (Pop (Pinj k Q') Q)
     | Z0 => mkPinj j (Pop Q' Q)
     | Zneg k => mkPinj j' (PaddI k Q')
     end
   | PX P i Q' => 
     match j with
     | xH => PX P i (Pop Q' Q)
     | xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
     | xI j => PX P i (PaddI (xO j) Q')
     end 
   end.

  Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PaddC (--Q) c)
   | Pinj j' Q' => 
     match ZPminus j' j with
     | Zpos k =>  mkPinj j (Pop (Pinj k Q') Q)
     | Z0 => mkPinj j (Pop Q' Q)
     | Zneg k => mkPinj j' (PsubI k Q')
     end
   | PX P i Q' => 
     match j with
     | xH => PX P i (Pop Q' Q)
     | xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
     | xI j => PX P i (PsubI (xO j) Q')
     end 
   end.
 
 Variable P' : Pol.
 
 Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
  match P with
  | Pc c => PX P' i' P
  | Pinj j Q' =>
    match j with
    | xH =>  PX P' i' Q'
    | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
    | xI j => PX P' i' (Pinj (xO j) Q')
    end
  | PX P i Q' =>
    match ZPminus i i' with
    | Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
    | Z0 => mkPX (Pop P P') i Q'
    | Zneg k => mkPX (PaddX k P) i Q'
    end
  end.

 Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
  match P with
  | Pc c => PX (--P') i' P
  | Pinj j Q' =>
    match j with
    | xH =>  PX (--P') i' Q'
    | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
    | xI j => PX (--P') i' (Pinj (xO j) Q')
    end
  | PX P i Q' =>
    match ZPminus i i' with
    | Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
    | Z0 => mkPX (Pop P P') i Q'
    | Zneg k => mkPX (PsubX k P) i Q'
    end
  end.

    
 End PopI.

 Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PaddC P c'
  | Pinj j' Q' => PaddI Padd Q' j' P
  | PX P' i' Q' =>
    match P with
    | Pc c => PX P' i' (PaddC Q' c)
    | Pinj j Q =>  
      match j with
      | xH => PX P' i' (Padd Q Q')
      | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
      | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
      end 
    | PX P i Q =>
      match ZPminus i i' with
      | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
      | Z0 => mkPX (Padd P P') i (Padd Q Q')
      | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
      end
    end
  end.
 Notation "P ++ P'" := (Padd P P').

 Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PsubC P c'
  | Pinj j' Q' => PsubI Psub Q' j' P
  | PX P' i' Q' =>
    match P with
    | Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c)
    | Pinj j Q =>  
      match j with
      | xH => PX (--P') i' (Psub Q Q')
      | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
      | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
      end 
    | PX P i Q =>
      match ZPminus i i' with
      | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
      | Z0 => mkPX (Psub P P') i (Psub Q Q')
      | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
      end
    end
  end.
 Notation "P -- P'" := (Psub P P').
 
 (** Multiplication *) 

 Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
  match P with
  | Pc c' => Pc (c' *! c)
  | Pinj j Q => mkPinj j (PmulC_aux Q c)
  | PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
  end.

 Definition PmulC P c :=
  if c ?=! cO then P0 else
  if c ?=! cI then P else PmulC_aux P c.
 
 Section PmulI. 
  Variable Pmul : Pol -> Pol -> Pol.
  Variable Q : Pol.
  Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
   match P with
   | Pc c => mkPinj j (PmulC Q c)
   | Pinj j' Q' => 
     match ZPminus j' j with
     | Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
     | Z0 => mkPinj j (Pmul Q' Q)
     | Zneg k => mkPinj j' (PmulI k Q')
     end
   | PX P' i' Q' =>
     match j with
     | xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
     | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
     | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
     end
   end.
 
 End PmulI.

 Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
  match P' with
  | Pc c' => PmulC P c'
  | Pinj j' Q' => PmulI Pmul_aux Q' j' P
  | PX P' i' Q' => 
     (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
  end.

 Definition Pmul P P' :=
  match P with
  | Pc c => PmulC P' c
  | Pinj j Q => PmulI Pmul_aux Q j P'
  | PX P i Q => 
    Padd (mkPX (Pmul_aux P P') i P0) (PmulI Pmul_aux Q xH P')
  end.
 Notation "P ** P'" := (Pmul P P').
 
 (** Evaluation of a polynomial towards R *)

 Fixpoint pow (x:R) (i:positive) {struct i}: R :=
  match i with
  | xH => x
  | xO i => let p := pow x i in p * p
  | xI i => let p := pow x i in x * p * p
  end.

 Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R :=
  match P with
  | Pc c => [c]
  | Pinj j Q => Pphi (jump j l) Q
  | PX P i Q => 
     let x := hd 0 l in
     let xi := pow x i in
    (Pphi l P) * xi + (Pphi (tail l) Q)      
  end.

 Reserved Notation "P @ l " (at level 10, no associativity).
 Notation "P @ l " := (Pphi l P).
 (** Proofs *)
 Lemma ZPminus_spec : forall x y,
  match ZPminus x y with
  | Z0 => x = y
  | Zpos k => x = (y + k)%positive
  | Zneg k => y = (x + k)%positive
  end.
 Proof.
  induction x;destruct y.
  replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
  replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
  apply Pplus_xI_double_minus_one.
  simpl;trivial.
  replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
  apply Pplus_xI_double_minus_one.
  replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
  assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
  replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
  rewrite <- Pplus_one_succ_l.
  rewrite Psucc_o_double_minus_one_eq_xO;trivial.
  replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
  replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
  rewrite <- Pplus_one_succ_l.
  rewrite Psucc_o_double_minus_one_eq_xO;trivial.
  simpl;trivial.
 Qed.

 Lemma pow_Psucc : forall x j, pow x (Psucc j) == x * pow x j.
 Proof.
  induction j;simpl;rsimpl.
  rewrite IHj;rsimpl;mul_push x;rrefl.
 Qed.

 Lemma pow_Pplus : forall x i j, pow x (i + j) == pow x i * pow x j.
 Proof.
  intro x;induction i;intros.
  rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
  rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
  repeat rewrite IHi.
  rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_Psucc.
  simpl;rsimpl.
  rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
  repeat rewrite IHi;rsimpl.
  rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_Psucc;
   simpl;rsimpl.
 Qed.
  
 Lemma Peq_ok : forall P P', 
    (P ?== P') = true -> forall l, P@l == P'@ l.
 Proof.
  induction P;destruct P';simpl;intros;try discriminate;trivial.
  apply (morph_eq CRmorph);trivial.
  assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
   try discriminate H.
  rewrite (IHP P' H); rewrite H1;trivial;rrefl.
  assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
   try discriminate H.
  rewrite H1;trivial. clear H1.
  assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
   destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
                         |discriminate H].
  rewrite (H1 H);rewrite (H2 H);rrefl.
 Qed.

 Lemma Pphi0 : forall l, P0@l == 0.
 Proof.
  intros;simpl;apply (morph0 CRmorph).
 Qed.

 Lemma Pphi1 : forall l,  P1@l == 1.
 Proof.
  intros;simpl;apply (morph1 CRmorph).
 Qed.

 Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
 Proof.
  intros j l p;destruct p;simpl;rsimpl.
  rewrite <-jump_Pplus;rewrite Pplus_comm;rrefl.
 Qed.

 Lemma mkPX_ok : forall l P i Q, 
  (mkPX P i Q)@l == P@l*(pow (hd 0 l) i) + Q@(tail l).
 Proof.
  intros l P i Q;unfold mkPX.
  destruct P;try (simpl;rrefl).
  assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
  rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
  rewrite mkPinj_ok;rsimpl;simpl;rrefl.
  assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
  rewrite (H (refl_equal true));trivial.
  rewrite Pphi0;rewrite pow_Pplus;rsimpl.
 Qed.

 Ltac Esimpl :=
  repeat (progress (
   match goal with
   | |- context [P0@?l] => rewrite (Pphi0 l)
   | |- context [P1@?l] => rewrite (Pphi1 l)
   | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P)
   | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q)
   | |- context [[cO]] => rewrite (morph0 CRmorph)
   | |- context [[cI]] => rewrite (morph1 CRmorph)
   | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y)
   | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y)
   | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y)
   | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x)
   end));
  rsimpl; simpl. 
 
 Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
 Proof.
  induction P;simpl;intros;Esimpl;trivial.
  rewrite IHP2;rsimpl.
 Qed.

 Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
 Proof.
  induction P;simpl;intros.
  Esimpl.
  rewrite IHP;rsimpl.
  rewrite IHP2;rsimpl.
 Qed.

 Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
 Proof.
  induction P;simpl;intros;Esimpl;trivial.
  rewrite IHP1;rewrite IHP2;rsimpl.
  mul_push ([c]);rrefl.
 Qed. 

 Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
 Proof.
  intros c P l; unfold PmulC.
  assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
  rewrite (H (refl_equal true));Esimpl.
  assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
  rewrite (H1 (refl_equal true));Esimpl.
  apply PmulC_aux_ok.
 Qed.

 Lemma Popp_ok : forall P l, (--P)@l == - P@l.
 Proof.
  induction P;simpl;intros.
  Esimpl.
  apply IHP.
  rewrite IHP1;rewrite IHP2;rsimpl.
 Qed.

 Ltac Esimpl2 :=
  Esimpl;
  repeat (progress (
   match goal with 
   | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
   | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
   | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
   | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
   end)); Esimpl.

 Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
 Proof.
  induction P';simpl;intros;Esimpl2.
  generalize P p l;clear P p l.
  induction P;simpl;intros.
  Esimpl2;apply (ARadd_sym ARth).
  assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
  rewrite H;Esimpl. rewrite IHP';rrefl.
  rewrite H;Esimpl. rewrite IHP';Esimpl.
  rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
  rewrite H;Esimpl. rewrite IHP.
  rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
  destruct p0;simpl.
  rewrite IHP2;simpl;rsimpl.
  rewrite IHP2;simpl.
  rewrite jump_Pdouble_minus_one;rsimpl.
  rewrite IHP';rsimpl.
  destruct P;simpl. 
  Esimpl2;add_push [c];rrefl.
  destruct p0;simpl;Esimpl2.
  rewrite IHP'2;simpl.
  rsimpl;add_push (P'1@l * (pow (hd 0 l) p));rrefl.
  rewrite IHP'2;simpl.
  rewrite jump_Pdouble_minus_one;rsimpl;add_push (P'1@l * (pow (hd 0 l) p));rrefl.
  rewrite IHP'2;rsimpl. add_push (P @ (tail l));rrefl.
  assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
  rewrite IHP'1;rewrite IHP'2;rsimpl.
  add_push (P3 @ (tail l));rewrite H;rrefl.
  rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
  rewrite H;rewrite Pplus_comm.
  rewrite pow_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
  assert (forall P k l, 
           (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow (hd 0 l) k).
   induction P;simpl;intros;try apply (ARadd_sym ARth).
   destruct p2;simpl;try apply (ARadd_sym ARth).
   rewrite jump_Pdouble_minus_one;apply (ARadd_sym ARth).
    assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
    rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
    rewrite IHP'1;simpl;Esimpl.
    rewrite H1;rewrite Pplus_comm.
    rewrite pow_Pplus;simpl;Esimpl.
    add_push (P5 @ (tail l0));rrefl.
    rewrite IHP1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_Pplus;simpl;rsimpl.
    add_push (P5 @ (tail l0));rrefl.
  rewrite H0;rsimpl.
  add_push (P3 @ (tail l)).
  rewrite H;rewrite Pplus_comm.
  rewrite IHP'2;rewrite pow_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
 Qed.

 Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
 Proof.
  induction P';simpl;intros;Esimpl2;trivial.
  generalize P p l;clear P p l.
  induction P;simpl;intros.
  Esimpl2;apply (ARadd_sym ARth).
  assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
  rewrite H;Esimpl. rewrite IHP';rsimpl. 
  rewrite H;Esimpl. rewrite IHP';Esimpl.
  rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
  rewrite H;Esimpl. rewrite IHP.
  rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
  destruct p0;simpl.
  rewrite IHP2;simpl;rsimpl.
  rewrite IHP2;simpl.
  rewrite jump_Pdouble_minus_one;rsimpl.
  rewrite IHP';rsimpl. 
  destruct P;simpl. 
  repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
  destruct p0;simpl;Esimpl2.
  rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow (hd 0 l) p));trivial.
  add_push (P @ (jump p0 (jump p0 (tail l))));rrefl.
  rewrite IHP'2;simpl;rewrite jump_Pdouble_minus_one;rsimpl.
  add_push (- (P'1 @ l * pow (hd 0 l) p));rrefl.
  rewrite IHP'2;rsimpl;add_push (P @ (tail l));rrefl.
  assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
  rewrite IHP'1; rewrite IHP'2;rsimpl.
  add_push (P3 @ (tail l));rewrite H;rrefl.
   rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
  rewrite H;rewrite Pplus_comm.
  rewrite pow_Pplus;rsimpl.
  add_push (P3 @ (tail l));rrefl.
  assert (forall P k l, 
           (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow (hd 0 l) k).
   induction P;simpl;intros.
   rewrite Popp_ok;rsimpl;apply (ARadd_sym ARth);trivial.
   destruct p2;simpl;rewrite Popp_ok;rsimpl.
   apply (ARadd_sym ARth);trivial.
   rewrite jump_Pdouble_minus_one;apply (ARadd_sym ARth);trivial.
   apply (ARadd_sym ARth);trivial.
    assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
    rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
    rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_Pplus;simpl;Esimpl.
    add_push (P5 @ (tail l0));rrefl.
    rewrite IHP1;rewrite H1;rewrite Pplus_comm.
    rewrite pow_Pplus;simpl;rsimpl.
    add_push (P5 @ (tail l0));rrefl.
  rewrite H0;rsimpl.
  rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
  rewrite H;rewrite Pplus_comm.
  rewrite pow_Pplus;rsimpl.
 Qed.
 
 Lemma PmulI_ok : 
  forall P', 
   (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
   forall (P : Pol) (p : positive) (l : list R),
    (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
 Proof.
  induction P;simpl;intros.
  Esimpl2;apply (ARmul_sym ARth).
  assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
  rewrite H1; rewrite H;rrefl.
  rewrite H1; rewrite H.
  rewrite Pplus_comm.
  rewrite jump_Pplus;simpl;rrefl.
  rewrite H1;rewrite Pplus_comm.
  rewrite jump_Pplus;rewrite IHP;rrefl.
  destruct p0;Esimpl2.
  rewrite IHP1;rewrite IHP2;simpl;rsimpl.
  mul_push (pow (hd 0 l) p);rrefl.
  rewrite IHP1;rewrite IHP2;simpl;rsimpl.
  mul_push (pow (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
  rewrite IHP1;simpl;rsimpl.
  mul_push (pow (hd 0 l) p).
  rewrite H;rrefl.
 Qed.

 Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
 Proof.
  induction P';simpl;intros.
  Esimpl2;trivial.
  apply PmulI_ok;trivial.
  rewrite Padd_ok;Esimpl2.
  rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
 Qed.

 Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
 Proof.
  destruct P;simpl;intros.
  Esimpl2;apply (ARmul_sym ARth).
  rewrite (PmulI_ok P (Pmul_aux_ok P)).
  apply (ARmul_sym ARth).
  rewrite Padd_ok; Esimpl2.
  rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
  rewrite Pmul_aux_ok;mul_push (P' @ l).
  rewrite (ARmul_sym ARth (P' @ l));rrefl.
 Qed.

 (** Definition of polynomial expressions *)

 Inductive PExpr : Type :=
  | PEc : C -> PExpr
  | PEX : positive -> PExpr
  | PEadd : PExpr -> PExpr -> PExpr
  | PEsub : PExpr -> PExpr -> PExpr
  | PEmul : PExpr -> PExpr -> PExpr
  | PEopp : PExpr -> PExpr.

 (** normalisation towards polynomials *)
 
 Definition X := (PX P1 xH P0).

 Definition mkX j :=
  match j with
  | xH => X
  | xO j => Pinj (Pdouble_minus_one j) X
  | xI j => Pinj (xO j) X
  end.

 Fixpoint norm (pe:PExpr) : Pol :=
  match pe with
  | PEc c => Pc c
  | PEX j => mkX j
  | PEadd pe1 (PEopp pe2) => Psub (norm pe1) (norm pe2)
  | PEadd (PEopp pe1) pe2 => Psub (norm pe2) (norm pe1)
  | PEadd pe1 pe2 => Padd (norm pe1) (norm pe2)
  | PEsub pe1 pe2 => Psub (norm pe1) (norm pe2)
  | PEmul pe1 pe2 => Pmul (norm pe1) (norm pe2)
  | PEopp pe1 => Popp (norm pe1)
  end.

 (** evaluation of polynomial expressions towards R *)
 
 Fixpoint PEeval (l:list R) (pe:PExpr) {struct pe} : R :=
  match pe with
  | PEc c => phi c
  | PEX j => nth 0 j l
  | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
  | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
  | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
  | PEopp pe1 => - (PEeval l pe1)
  end.

 (** Correctness proofs *)
 

 Lemma mkX_ok : forall p l, nth 0 p l == (mkX p) @ l.
 Proof.
  destruct p;simpl;intros;Esimpl;trivial.
  rewrite <-jump_tl;rewrite nth_jump;rrefl.
  rewrite <- nth_jump.
  rewrite nth_Pdouble_minus_one;rrefl.
 Qed.

 Lemma norm_PEopp : forall l pe,  (norm (PEopp pe))@l == -(norm pe)@l.
 Proof.
  intros;simpl;apply Popp_ok.
 Qed.

 Ltac Esimpl3 := 
  repeat match goal with
  | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
  | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
  | |- context [(norm (PEopp ?pe))@?l] => rewrite (norm_PEopp l pe)
  end;Esimpl2;try rrefl;try apply (ARadd_sym ARth).

 Lemma norm_ok : forall l pe,  PEeval l pe == (norm pe)@l.
 Proof.
  induction pe;simpl;Esimpl3.
  apply mkX_ok.
  rewrite IHpe1;rewrite IHpe2; destruct pe1;destruct pe2;Esimpl3.
  rewrite IHpe1;rewrite IHpe2;rrefl.
  rewrite Pmul_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
  rewrite IHpe;rrefl.
 Qed.

 Lemma ring_correct : forall l pe1 pe2, 
  ((norm pe1) ?== (norm pe2)) = true -> (PEeval l pe1) == (PEeval l pe2).
 Proof.
  intros l pe1 pe2 H.
  repeat rewrite norm_ok.
  apply  (Peq_ok (norm pe1) (norm pe2) H l).
 Qed.

(** Evaluation function avoiding parentheses *)
 Fixpoint mkmult (r:R) (lm:list R) {struct lm}: R :=
  match lm with
  | nil => r
  | cons h t => mkmult (r*h) t
  end.
 		       
 Definition mkadd_mult rP lm :=
  match lm with
  | nil => rP + 1
  | cons h t => rP + mkmult h t
  end.

 Fixpoint powl (i:positive) (x:R) (l:list R) {struct i}: list R :=
  match i with
  | xH => cons x l
  | xO i => powl i x (powl i x l)
  | xI i => powl i x (powl i x (cons x l))
  end.
			       
 Fixpoint add_mult_dev (rP:R) (P:Pol) (fv lm:list R) {struct P} : R :=
  (* rP + P@l * lm *)
  match P with
  | Pc c => if c ?=! cI then mkadd_mult rP (rev lm) 
    else mkadd_mult rP (cons [c] (rev lm))
  | Pinj j Q => add_mult_dev rP Q (jump j fv) lm
  | PX P i Q => 
     let rP := add_mult_dev rP P fv (powl i (hd 0 fv) lm) in
     if Q ?== P0 then rP else add_mult_dev rP Q (tail fv) lm
  end.
 
 Definition mkmult1 lm :=
  match lm with
  | nil => rI
  | cons h t => mkmult h t
  end.
    
 Fixpoint mult_dev (P:Pol) (fv lm : list R) {struct P} : R :=
  (* P@l * lm *)							      
  match P with
  | Pc c => if c ?=! cI then mkmult1 (rev lm) else mkmult [c] (rev lm)
  | Pinj j Q => mult_dev Q (jump j fv) lm
  | PX P i Q => 
     let rP := mult_dev P fv (powl i (hd 0 fv) lm) in
     if Q ?== P0 then rP else add_mult_dev rP Q (tail fv) lm
  end. 

 Definition Pphi_dev fv P := mult_dev P fv nil.

 Add Morphism mkmult : mkmult_ext.
  intros r r0 eqr l;generalize l r r0 eqr;clear l r r0 eqr;
   induction l;simpl;intros.
  trivial. apply IHl; rewrite eqr;rrefl.
 Qed.

 Lemma mul_mkmult : forall lm r1 r2, r1 * mkmult r2 lm == mkmult (r1*r2) lm.
 Proof.
  induction lm;simpl;intros;try rrefl.
  rewrite IHlm.
  setoid_replace (r1 * (r2 * a)) with (r1 * r2 * a);Esimpl.
 Qed.

 Lemma mkmult1_mkmult : forall lm r, r * mkmult1 lm == mkmult r lm.
 Proof.
  destruct lm;simpl;intros. Esimpl.
  apply mul_mkmult.
 Qed.
 
 Lemma mkmult1_mkmult_1 : forall lm, mkmult1 lm == mkmult 1 lm.
 Proof.
  intros;rewrite <- mkmult1_mkmult;Esimpl.
 Qed.

 Lemma mkmult_rev_append : forall lm l r,
  mkmult r (rev_append l lm) == mkmult (mkmult r l) lm.
 Proof.
 induction lm; simpl in |- *; intros.
 rrefl.
 rewrite IHlm; simpl in |- *.
   repeat rewrite <- (ARmul_sym ARth a); rewrite <- mul_mkmult.
   rrefl.
 Qed.

 Lemma powl_mkmult_rev : forall p r x lm,
  mkmult r (rev (powl p x lm)) == mkmult (pow x p * r) (rev lm).
 Proof.
  induction p;simpl;intros.
  repeat rewrite IHp.
  unfold rev;simpl.
  repeat rewrite mkmult_rev_append.
  simpl.
  setoid_replace (pow x p * (pow x p * r) * x) 
    with (x * pow x p * pow x p * r);Esimpl.
  mul_push x;rrefl.
  repeat rewrite IHp.
  setoid_replace (pow x p * (pow x p * r) ) 
    with (pow x p * pow x p * r);Esimpl.
  unfold rev;simpl. repeat rewrite mkmult_rev_append;simpl.
  rewrite (ARmul_sym ARth);rrefl.
 Qed.

 Lemma Pphi_add_mult_dev : forall P rP fv lm, 
    rP + P@fv * mkmult1 (rev lm) == add_mult_dev rP P fv lm.
 Proof.
  induction P;simpl;intros.
  assert (H := (morph_eq CRmorph) c cI).
   destruct (c ?=! cI).
    rewrite (H (refl_equal true));rewrite (morph1 CRmorph);Esimpl.
    destruct (rev lm);Esimpl;rrefl.
    rewrite mkmult1_mkmult;rrefl.
   apply IHP.
   replace (match P3 with
       | Pc c => c ?=! cO
       | Pinj _ _ => false
       | PX _ _ _ => false
       end) with (Peq P3 P0);trivial.
   assert (H := Peq_ok P3 P0).
    destruct (P3 ?== P0).
    rewrite (H (refl_equal true));simpl;Esimpl.
   rewrite <- IHP1.
     repeat rewrite mkmult1_mkmult_1.
     rewrite powl_mkmult_rev.
     rewrite <- mul_mkmult;Esimpl.
   rewrite <- IHP2.
   rewrite <- IHP1.
     repeat rewrite mkmult1_mkmult_1.
     rewrite powl_mkmult_rev.
     rewrite <- mul_mkmult;Esimpl.
 Qed.
                                     
 Lemma Pphi_mult_dev : forall P fv lm,
	 P@fv * mkmult1 (rev lm) == mult_dev P fv lm.
 Proof.
  induction P;simpl;intros.
   assert (H := (morph_eq CRmorph) c cI).
   destruct (c ?=! cI).
    rewrite (H (refl_equal true));rewrite (morph1 CRmorph);Esimpl.
    apply  mkmult1_mkmult.
   apply IHP.
   replace (match P3 with
       | Pc c => c ?=! cO
       | Pinj _ _ => false
       | PX _ _ _ => false
       end) with (Peq P3 P0);trivial.
   assert (H := Peq_ok P3 P0).
   destruct (P3 ?== P0).
   rewrite (H (refl_equal true));simpl;Esimpl.
   rewrite <- IHP1.
     repeat rewrite mkmult1_mkmult_1.
     rewrite powl_mkmult_rev.
     rewrite <- mul_mkmult;Esimpl.
   rewrite <- Pphi_add_mult_dev.
   rewrite <- IHP1.
     repeat rewrite mkmult1_mkmult_1.
     rewrite powl_mkmult_rev.
     rewrite <- mul_mkmult;Esimpl.
 Qed.

 Lemma Pphi_Pphi_dev :  forall P l,  P@l == Pphi_dev l P.
 Proof. 		
  unfold Pphi_dev;intros.
  rewrite <- Pphi_mult_dev;simpl;Esimpl.
 Qed.

 Lemma Pphi_dev_gen_ok :  forall l pe,  PEeval l pe == Pphi_dev l (norm pe).
 Proof.
  intros l pe;rewrite <- Pphi_Pphi_dev;apply norm_ok.
 Qed.

 Lemma Pphi_dev_ok :
   forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.
 Proof.
  intros l pe npe npe_eq; subst npe; apply Pphi_dev_gen_ok.
 Qed. 

End MakeRingPol.