aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/setoid_ring/Field_tac.v
blob: 786654abb91829dfbdc894797043b5bb56c54065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Ring_tac BinList Ring_polynom InitialRing.
Require Export Field_theory.

 (* syntaxification *)
 Ltac mkFieldexpr C Cst radd rmul rsub ropp rdiv rinv t fv := 
 let rec mkP t :=
    match Cst t with
    | Ring_tac.NotConstant =>
        match t with 
        | (radd ?t1 ?t2) => 
          let e1 := mkP t1 in
          let e2 := mkP t2 in constr:(FEadd e1 e2)
        | (rmul ?t1 ?t2) => 
          let e1 := mkP t1 in
          let e2 := mkP t2 in constr:(FEmul e1 e2)
        | (rsub ?t1 ?t2) => 
          let e1 := mkP t1 in
          let e2 := mkP t2 in constr:(FEsub e1 e2)
        | (ropp ?t1) =>
          let e1 := mkP t1 in constr:(FEopp e1)
        | (rdiv ?t1 ?t2) => 
          let e1 := mkP t1 in
          let e2 := mkP t2 in constr:(FEdiv e1 e2)
        | (rinv ?t1) =>
          let e1 := mkP t1 in constr:(FEinv e1)
        | _ =>
          let p := Find_at t fv in constr:(@FEX C p)
        end
    | ?c => constr:(FEc c)
    end
 in mkP t.

Ltac FFV Cst add mul sub opp div inv t fv :=
 let rec TFV t fv :=
  match Cst t with
  | Ring_tac.NotConstant =>
      match t with
      | (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
      | (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
      | (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
      | (opp ?t1) => TFV t1 fv
      | (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
      | (inv ?t1) => TFV t1 fv
      | _ => AddFvTail t fv
      end
  | _ => fv
  end 
 in TFV t fv.

Ltac ParseFieldComponents lemma req :=
  match type of lemma with
  | context [@FEeval ?R ?rO ?add ?mul ?sub ?opp ?div ?inv ?C ?phi _ _] =>
      (fun f => f add mul sub opp div inv C)
  | _ => fail 1 "field anomaly: bad correctness lemma (parse)"
  end.

(* simplifying the non-zero condition... *)

Ltac fold_field_cond req :=
  let rec fold_concl t :=
    match t with
      ?x /\ ?y =>
        let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy)
    | req ?x ?y -> False => constr:(~ req x y)
    | _ => t
    end in
  match goal with
    |- ?t => let ft := fold_concl t in change ft
  end.

Ltac simpl_PCond req :=
  protect_fv "field_cond";
  try (exact I);
  fold_field_cond req.

(* Rewriting (field_simplify) *)
Ltac Field_simplify lemma Cond_lemma req Cst_tac :=
  let Make_tac :=
    match type of lemma with
    | forall l fe nfe,
      _ = nfe -> 
      PCond _ _ _ _ _ _ _ _ _ ->
      req (FEeval ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv (C:=?C) ?phi l fe)
        _ =>
        let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in
        let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in
        let simpl_field H := protect_fv "field" in H in
        fun f rl => f mkFV mkFE simpl_field lemma req rl;
                    try (apply Cond_lemma; simpl_PCond req)
    | _ => fail 1 "field anomaly: bad correctness lemma (rewr)"
    end in
  Make_tac ReflexiveRewriteTactic.
(* Pb: second rewrite are applied to non-zero condition of first rewrite... *)

Tactic Notation (at level 0) "field_simplify" constr_list(rl) :=
  field_lookup
    (fun req cst_tac _ _ field_simplify_ok cond_ok pre post rl =>
       pre(); Field_simplify field_simplify_ok cond_ok req cst_tac rl; post()).


(* Generic form of field tactics *)
Ltac Field_Scheme FV_tac SYN_tac SIMPL_tac lemma Cond_lemma req :=
  let R := match type of req with ?R -> _ => R end in
  let rec ParseExpr ilemma :=
    match type of ilemma with
      forall nfe, ?fe = nfe -> _ =>
        (fun t => 
           let x := fresh "fld_expr" in 
           let H := fresh "norm_fld_expr" in
           compute_assertion H x fe;
           ParseExpr (ilemma x H) t;
           try clear x H)
    | _ => (fun t => t ilemma)
    end in
  let Main r1 r2 :=
    let fv := FV_tac r1 (@List.nil R) in
    let fv := FV_tac r2 fv in
    let fe1 := SYN_tac r1 fv in
    let fe2 := SYN_tac r2 fv in
    ParseExpr (lemma fv fe1 fe2)
    ltac:(fun ilemma =>
           apply ilemma || fail "field anomaly: failed in applying lemma";
            [ SIMPL_tac | apply Cond_lemma; simpl_PCond req]) in
  OnEquation req Main.

(* solve completely a field equation, leaving non-zero conditions to be
   proved (field) *)
Ltac Field lemma Cond_lemma req Cst_tac :=
  let Main radd rmul rsub ropp rdiv rinv C :=
    let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in
    let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in
    let Simpl :=
      vm_compute; reflexivity || fail "not a valid field equation" in
    Field_Scheme mkFV mkFE Simpl lemma Cond_lemma req in
  ParseFieldComponents lemma req Main.

Tactic Notation (at level 0) "field" :=
  field_lookup
    (fun req cst_tac field_ok _ _ cond_ok pre post rl =>
       pre(); Field field_ok cond_ok req cst_tac; post()).

(* transforms a field equation to an equivalent (simplified) ring equation,
   and leaves non-zero conditions to be proved (field_simplify_eq) *)
Ltac Field_simplify_eq lemma Cond_lemma req Cst_tac :=
  let Main radd rmul rsub ropp rdiv rinv C :=
    let mkFV := FFV Cst_tac radd rmul rsub ropp rdiv rinv in
    let mkFE := mkFieldexpr C Cst_tac radd rmul rsub ropp rdiv rinv in
    let Simpl := (protect_fv "field") in
    Field_Scheme mkFV mkFE Simpl lemma Cond_lemma req in
  ParseFieldComponents lemma req Main.

Tactic Notation (at level 0) "field_simplify_eq" :=
  field_lookup
    (fun req cst_tac _ field_simplify_eq_ok _ cond_ok pre post rl =>
       pre(); Field_simplify_eq field_simplify_eq_ok cond_ok req cst_tac;
       post()).

(* Adding a new field *)

Ltac ring_of_field f :=
  match type of f with
  | almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f)
  | field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f)
  | semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f)
  end.

Ltac coerce_to_almost_field set ext f :=
  match type of f with
  | almost_field_theory _ _ _ _ _ _ _ _ _ => f
  | field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f)
  | semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f)
  end.

Ltac field_elements set ext fspec rk :=
  let afth := coerce_to_almost_field set ext fspec in
  let rspec := ring_of_field fspec in
  ring_elements set ext rspec rk
  ltac:(fun arth ext_r morph f => f afth ext_r morph).


Ltac field_lemmas set ext inv_m fspec rk :=
  field_elements set ext fspec rk
  ltac:(fun afth ext_r morph =>
    let field_ok := constr:(Field_correct set ext_r inv_m afth morph) in
    let field_simpl_ok :=
      constr:(Pphi_dev_div_ok set ext_r inv_m afth morph) in
    let field_simpl_eq_ok :=
      constr:(Field_simplify_eq_correct set ext_r inv_m afth morph) in
    let cond1_ok := constr:(Pcond_simpl_gen set ext_r afth morph) in
    let cond2_ok := constr:(Pcond_simpl_complete set ext_r afth morph) in
    (fun f => f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok
                cond1_ok cond2_ok)).