1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
Require Export Bool.
Require Export Setoid.
Set Implicit Arguments.
Section Setoid_rings.
Variable A : Type.
Variable Aequiv : A -> A -> Prop.
Infix Local "==" := Aequiv (at level 70, no associativity).
Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Notation "- x" := (Aopp x).
Variable
plus_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a + a1 == a0 + a2.
Variable
mult_morph : forall a a0 a1 a2:A, a == a0 -> a1 == a2 -> a * a1 == a0 * a2.
Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
Add Morphism Aplus : Aplus_ext.
exact plus_morph.
Qed.
Add Morphism Amult : Amult_ext.
exact mult_morph.
Qed.
Add Morphism Aopp : Aopp_ext.
exact opp_morph.
Qed.
Section Theory_of_semi_setoid_rings.
Record Semi_Setoid_Ring_Theory : Prop :=
{SSR_plus_comm : forall n m:A, n + m == m + n;
SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
SSR_mult_comm : forall n m:A, n * m == m * n;
SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
SSR_plus_zero_left : forall n:A, 0 + n == n;
SSR_mult_one_left : forall n:A, 1 * n == n;
SSR_mult_zero_left : forall n:A, 0 * n == 0;
SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Semi_Setoid_Ring_Theory.
Let plus_comm := SSR_plus_comm T.
Let plus_assoc := SSR_plus_assoc T.
Let mult_comm := SSR_mult_comm T.
Let mult_assoc := SSR_mult_assoc T.
Let plus_zero_left := SSR_plus_zero_left T.
Let mult_one_left := SSR_mult_one_left T.
Let mult_zero_left := SSR_mult_zero_left T.
Let distr_left := SSR_distr_left T.
Let plus_reg_left := SSR_plus_reg_left T.
Let equiv_refl := Seq_refl A Aequiv S.
Let equiv_sym := Seq_sym A Aequiv S.
Let equiv_trans := Seq_trans A Aequiv S.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left mult_zero_left distr_left plus_reg_left
equiv_refl (*equiv_sym*).
Hint Immediate equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because
Auto does not symmetry *)
Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
auto. Qed.
Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
auto. Qed.
Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
auto. Qed.
Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
auto. Qed.
Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
auto. Qed.
Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
auto. Qed.
Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
intros.
rewrite (plus_assoc n m p).
rewrite (plus_comm n m).
rewrite <- (plus_assoc m n p).
trivial.
Qed.
Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
intros.
rewrite (mult_assoc n m p).
rewrite (mult_comm n m).
rewrite <- (mult_assoc m n p).
trivial.
Qed.
Hint Resolve SSR_plus_permute SSR_mult_permute.
Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
intros.
rewrite (mult_comm n (m + p)).
rewrite (mult_comm n m).
rewrite (mult_comm n p).
auto.
Qed.
Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
intros.
apply equiv_sym.
apply SSR_distr_right.
Qed.
Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
intro; apply plus_reg_left with n; trivial.
Qed.
End Theory_of_semi_setoid_rings.
Section Theory_of_setoid_rings.
Record Setoid_Ring_Theory : Prop :=
{STh_plus_comm : forall n m:A, n + m == m + n;
STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
STh_mult_sym : forall n m:A, n * m == m * n;
STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
STh_plus_zero_left : forall n:A, 0 + n == n;
STh_mult_one_left : forall n:A, 1 * n == n;
STh_opp_def : forall n:A, n + - n == 0;
STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Setoid_Ring_Theory.
Let plus_comm := STh_plus_comm T.
Let plus_assoc := STh_plus_assoc T.
Let mult_comm := STh_mult_sym T.
Let mult_assoc := STh_mult_assoc T.
Let plus_zero_left := STh_plus_zero_left T.
Let mult_one_left := STh_mult_one_left T.
Let opp_def := STh_opp_def T.
Let distr_left := STh_distr_left T.
Let equiv_refl := Seq_refl A Aequiv S.
Let equiv_sym := Seq_sym A Aequiv S.
Let equiv_trans := Seq_trans A Aequiv S.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left opp_def distr_left equiv_refl equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
auto. Qed.
Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
auto. Qed.
Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
auto. Qed.
Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
auto. Qed.
Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
auto. Qed.
Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
auto. Qed.
Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
intros.
rewrite (plus_assoc n m p).
rewrite (plus_comm n m).
rewrite <- (plus_assoc m n p).
trivial.
Qed.
Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
intros.
rewrite (mult_assoc n m p).
rewrite (mult_comm n m).
rewrite <- (mult_assoc m n p).
trivial.
Qed.
Hint Resolve STh_plus_permute STh_mult_permute.
Lemma Saux1 : forall a:A, a + a == a -> a == 0.
intros.
rewrite <- (plus_zero_left a).
rewrite (plus_comm 0 a).
setoid_replace (a + 0) with (a + (a + - a)); auto.
rewrite (plus_assoc a a (- a)).
rewrite H.
apply opp_def.
Qed.
Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
intros.
apply Saux1.
rewrite <- (distr_left 0 0 n).
rewrite (plus_zero_left 0).
trivial.
Qed.
Hint Resolve STh_mult_zero_left.
Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
auto.
Qed.
Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
intros.
rewrite <- (plus_zero_left y).
rewrite <- H0.
rewrite <- (plus_assoc x z y).
rewrite (plus_comm z y).
rewrite (plus_assoc x y z).
rewrite H.
auto.
Qed.
Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
intros.
apply Saux2 with (x * y); auto.
rewrite <- (distr_left x (- x) y).
rewrite (opp_def x).
auto.
Qed.
Hint Resolve STh_opp_mult_left.
Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
auto.
Qed.
Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma STh_mult_one_right : forall n:A, n * 1 == n.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
intros.
rewrite (mult_comm x y).
rewrite (mult_comm x (- y)).
auto.
Qed.
Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
intros.
rewrite (mult_comm x y).
rewrite (mult_comm x (- y)).
auto.
Qed.
Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
intros.
apply Saux2 with (x + y); auto.
rewrite (STh_plus_permute (x + y) (- x) (- y)).
rewrite <- (plus_assoc x y (- y)).
rewrite (opp_def y); rewrite (STh_plus_zero_right x).
rewrite (STh_opp_def2 x); trivial.
Qed.
Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
auto.
Qed.
Lemma STh_opp_opp : forall n:A, - - n == n.
intro.
apply Saux2 with (- n); auto.
rewrite (plus_comm (- n) n); auto.
Qed.
Hint Resolve STh_opp_opp.
Lemma STh_opp_opp2 : forall n:A, n == - - n.
auto.
Qed.
Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
intros.
rewrite (STh_opp_mult_left2 x (- y)).
rewrite (STh_opp_mult_right2 x y).
trivial.
Qed.
Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
intros.
apply equiv_sym.
apply STh_mult_opp_opp.
Qed.
Lemma STh_opp_zero : - 0 == 0.
rewrite <- (plus_zero_left (- 0)).
trivial.
Qed.
Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
intros.
rewrite <- (plus_zero_left m).
rewrite <- (plus_zero_left p).
rewrite <- (opp_def n).
rewrite (plus_comm n (- n)).
rewrite <- (plus_assoc (- n) n m).
rewrite <- (plus_assoc (- n) n p).
auto.
Qed.
Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
intros.
apply STh_plus_reg_left with n.
rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
Qed.
Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
intros.
rewrite (mult_comm n (m + p)).
rewrite (mult_comm n m).
rewrite (mult_comm n p).
trivial.
Qed.
Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
intros.
apply equiv_sym.
apply STh_distr_right.
Qed.
End Theory_of_setoid_rings.
Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
Unset Implicit Arguments.
Definition Semi_Setoid_Ring_Theory_of :
Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
intros until 1; case H.
split; intros; simpl in |- *; eauto.
Defined.
Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
Semi_Setoid_Ring_Theory.
Section product_ring.
End product_ring.
Section power_ring.
End power_ring.
End Setoid_rings.
|