blob: fa2ba1ca0caa9debae83ade7564c366b05c877a4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* $Id$ *)
Require Export Bool.
Require Export Ring_theory.
Require Export Quote.
Require Export Ring_normalize.
Require Export Ring_abstract.
(* As an example, we provide an instantation for bool. *)
(* Other instatiations are given in ArithRing and ZArithRing in the
same directory *)
Definition BoolTheory : (Ring_Theory xorb andb true false [b:bool]b eqb).
Split; Simpl.
NewDestruct n; NewDestruct m; Reflexivity.
NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
NewDestruct n; NewDestruct m; Reflexivity.
NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
NewDestruct n; Reflexivity.
NewDestruct n; Reflexivity.
NewDestruct n; Reflexivity.
NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
NewDestruct x; NewDestruct y; Reflexivity Orelse Simpl; Tauto.
Defined.
Add Ring bool xorb andb true false [b:bool]b eqb BoolTheory [ true false ].
|