blob: cc316e3615b19943bcee11acddf7e5b47cef3693 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
(* $Id$ *)
Require Export Bool.
Require Export Ring_theory.
Require Export Quote.
Require Export Ring_normalize.
Require Export Ring_abstract.
Declare ML Module "ring".
Grammar tactic simple_tactic :=
ring [ "Ring" comarg_list($arg) ] -> [(Ring ($LIST $arg))].
Syntax tactic level 0:
ring [ (Ring ($LIST $lc)) ] -> [ "Ring" [1 1] (LISTSPC ($LIST $lc)) ]
| ring_e [ (Ring) ] -> ["Ring"].
Grammar vernac vernac :=
addring [ "Add" "Ring"
comarg($a) comarg($aplus) comarg($amult) comarg($aone)
comarg($azero) comarg($aopp) comarg($aeq) comarg($t)
"[" ne_comarg_list($l) "]" "." ]
-> [(AddRing $a $aplus $amult $aone $azero $aopp $aeq $t
($LIST $l))]
| addsemiring [ "Add" "Semi" "Ring"
comarg($a) comarg($aplus) comarg($amult) comarg($aone)
comarg($azero) comarg($aeq) comarg($t)
"[" ne_comarg_list($l) "]" "." ]
-> [(AddSemiRing $a $aplus $amult $aone $azero $aeq $t
($LIST $l))]
| addabstractring [ "Add" "Abstract" "Ring"
comarg($a) comarg($aplus) comarg($amult) comarg($aone)
comarg($azero) comarg($aopp) comarg($aeq) comarg($t) "." ]
-> [(AddAbstractRing $a $aplus $amult $aone $azero $aopp $aeq $t)]
| addabstractsemiring [ "Add" "Abstract" "Semi" "Ring"
comarg($a) comarg($aplus) comarg($amult) comarg($aone)
comarg($azero) comarg($aeq) comarg($t) "." ]
-> [(AddAbstractSemiRing $a $aplus $amult $aone $azero $aeq $t )]
.
(* As an example, we provide an instantation for bool. *)
(* Other instatiations are given in ArithRing and ZArithRing in the
same directory *)
Definition BoolTheory : (Ring_Theory xorb andb true false [b:bool]b eqb).
Split; Simpl.
Destruct n; Destruct m; Reflexivity.
Destruct n; Destruct m; Destruct p; Reflexivity.
Destruct n; Destruct m; Reflexivity.
Destruct n; Destruct m; Destruct p; Reflexivity.
Destruct n; Reflexivity.
Destruct n; Reflexivity.
Destruct n; Reflexivity.
Destruct n; Destruct m; Destruct p; Reflexivity.
Destruct x; Destruct y; Reflexivity Orelse Tauto.
Defined.
Add Ring bool xorb andb true false [b:bool]b eqb BoolTheory [ true false ].
|