1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id$ *)
open Term
open Termops
open Environ
open Declarations
open Entries
open Pp
open Names
open Libnames
open Nameops
open Util
open Closure
open RedFlags
open Tacticals
open Typing
open Tacmach
open Tactics
open Nametab
open Declare
open Decl_kinds
open Tacred
open Proof_type
open Vernacinterp
open Pfedit
open Topconstr
open Rawterm
open Pretyping
open Pretyping.Default
open Safe_typing
open Constrintern
open Hiddentac
open Equality
open Auto
open Eauto
open Genarg
let compute_renamed_type gls c =
rename_bound_var (pf_env gls) [] (pf_type_of gls c)
let qed () = Command.save_named true
let defined () = Command.save_named false
let pf_get_new_ids idl g =
let ids = pf_ids_of_hyps g in
List.fold_right
(fun id acc -> next_global_ident_away false id (acc@ids)::acc)
idl
[]
let pf_get_new_id id g =
List.hd (pf_get_new_ids [id] g)
let h_intros l =
tclMAP h_intro l
let do_observe_tac s tac g =
let goal = begin (Printer.pr_goal (sig_it g)) end in
try let v = tac g in msgnl (goal ++ fnl () ++ (str "recdef ") ++
(str s)++(str " ")++(str "finished")); v
with e ->
msgnl (str "observation "++str s++str " raised exception " ++
Cerrors.explain_exn e ++ str " on goal " ++ goal );
raise e;;
let observe_tac s tac g =
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
then do_observe_tac s tac g
else tac g
let hyp_ids = List.map id_of_string
["x";"v";"k";"def";"p";"h";"n";"h'"; "anonymous"; "teq"; "rec_res";
"hspec";"heq"; "hrec"; "hex"; "teq"; "pmax";"hle"];;
let rec nthtl = function
l, 0 -> l | _::tl, n -> nthtl (tl, n-1) | [], _ -> [];;
let hyp_id n l = List.nth l n;;
let (x_id:identifier) = hyp_id 0 hyp_ids;;
let (v_id:identifier) = hyp_id 1 hyp_ids;;
let (k_id:identifier) = hyp_id 2 hyp_ids;;
let (def_id:identifier) = hyp_id 3 hyp_ids;;
let (p_id:identifier) = hyp_id 4 hyp_ids;;
let (h_id:identifier) = hyp_id 5 hyp_ids;;
let (n_id:identifier) = hyp_id 6 hyp_ids;;
let (h'_id:identifier) = hyp_id 7 hyp_ids;;
let (ano_id:identifier) = hyp_id 8 hyp_ids;;
let (rec_res_id:identifier) = hyp_id 10 hyp_ids;;
let (hspec_id:identifier) = hyp_id 11 hyp_ids;;
let (heq_id:identifier) = hyp_id 12 hyp_ids;;
let (hrec_id:identifier) = hyp_id 13 hyp_ids;;
let (hex_id:identifier) = hyp_id 14 hyp_ids;;
let (teq_id:identifier) = hyp_id 15 hyp_ids;;
let (pmax_id:identifier) = hyp_id 16 hyp_ids;;
let (hle_id:identifier) = hyp_id 17 hyp_ids;;
let message s = if Options.is_verbose () then msgnl(str s);;
let def_of_const t =
match (kind_of_term t) with
Const sp ->
(try (match (Global.lookup_constant sp) with
{const_body=Some c} -> Declarations.force c
|_ -> assert false)
with _ ->
anomaly ("Cannot find definition of constant "^
(string_of_id (id_of_label (con_label sp))))
)
|_ -> assert false
let type_of_const t =
match (kind_of_term t) with
Const sp -> Typeops.type_of_constant (Global.env()) sp
|_ -> assert false
let arg_type t =
match kind_of_term (def_of_const t) with
Lambda(a,b,c) -> b
| _ -> assert false;;
let evaluable_of_global_reference r =
match r with
ConstRef sp -> EvalConstRef sp
| VarRef id -> EvalVarRef id
| _ -> assert false;;
let rank_for_arg_list h =
let predicate a b =
try List.for_all2 eq_constr a b with
Invalid_argument _ -> false in
let rec rank_aux i = function
| [] -> None
| x::tl -> if predicate h x then Some i else rank_aux (i+1) tl in
rank_aux 0;;
let rec (find_call_occs : int -> constr -> constr ->
(constr list -> constr) * constr list list) =
fun nb_lam f expr ->
match (kind_of_term expr) with
App (g, args) when g = f ->
(fun l -> List.hd l), [Array.to_list args]
| App (g, args) ->
let (largs: constr list) = Array.to_list args in
let rec find_aux = function
[] -> (fun x -> []), []
| a::upper_tl ->
(match find_aux upper_tl with
(cf, ((arg1::args) as args_for_upper_tl)) ->
(match find_call_occs nb_lam f a with
cf2, (_ :: _ as other_args) ->
let rec avoid_duplicates args =
match args with
| [] -> (fun _ -> []), []
| h::tl ->
let recomb_tl, args_for_tl =
avoid_duplicates tl in
match rank_for_arg_list h args_for_upper_tl with
| None ->
(fun l -> List.hd l::recomb_tl(List.tl l)),
h::args_for_tl
| Some i ->
(fun l -> List.nth l (i+List.length args_for_tl)::
recomb_tl l),
args_for_tl
in
let recombine, other_args' =
avoid_duplicates other_args in
let len1 = List.length other_args' in
(fun l -> cf2 (recombine l)::cf(nthtl(l,len1))),
other_args'@args_for_upper_tl
| _, [] -> (fun x -> a::cf x), args_for_upper_tl)
| _, [] ->
(match find_call_occs nb_lam f a with
cf, (arg1::args) -> (fun l -> cf l::upper_tl), (arg1::args)
| _, [] -> (fun x -> a::upper_tl), [])) in
begin
match (find_aux largs) with
cf, [] -> (fun l -> mkApp(g, args)), []
| cf, args ->
(fun l -> mkApp (g, Array.of_list (cf l))), args
end
| Rel(v) -> if v > nb_lam then error "find_call_occs : Rel" else ((fun l -> expr),[])
| Var(id) -> (fun l -> expr), []
| Meta(_) -> error "find_call_occs : Meta"
| Evar(_) -> error "find_call_occs : Evar"
| Sort(_) -> error "find_call_occs : Sort"
| Cast(b,_,_) -> find_call_occs nb_lam f b
| Prod(_,_,_) -> error "find_call_occs : Prod"
| Lambda(na,t,b) ->
begin
match find_call_occs (succ nb_lam) f b with
| _, [] -> (* Lambda are authorized as long as they do not contain
recursives calls *)
(fun l -> expr),[]
| _ -> error "find_call_occs : Lambda"
end
| LetIn(na,v,t,b) ->
begin
match find_call_occs nb_lam f v, find_call_occs (succ nb_lam) f b with
| (_,[]),(_,[]) ->
((fun l -> expr), [])
| (_,[]),(cf,(_::_ as l)) ->
((fun l -> mkLetIn(na,v,t,cf l)),l)
| (cf,(_::_ as l)),(_,[]) ->
((fun l -> mkLetIn(na,cf l,t,b)), l)
| _ -> error "find_call_occs : LetIn"
end
| Const(_) -> (fun l -> expr), []
| Ind(_) -> (fun l -> expr), []
| Construct (_, _) -> (fun l -> expr), []
| Case(i,t,a,r) ->
(match find_call_occs nb_lam f a with
cf, (arg1::args) -> (fun l -> mkCase(i, t, (cf l), r)),(arg1::args)
| _ -> (fun l -> expr),[])
| Fix(_) -> error "find_call_occs : Fix"
| CoFix(_) -> error "find_call_occs : CoFix";;
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
(Coqlib.init_modules @ Coqlib.arith_modules) s;;
let constant sl s =
constr_of_reference
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let find_reference sl s =
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let delayed_force f = f ()
let le_lt_SS = function () -> (constant ["Recdef"] "le_lt_SS")
let le_lt_n_Sm = function () -> (coq_constant "le_lt_n_Sm")
let le_trans = function () -> (coq_constant "le_trans")
let le_lt_trans = function () -> (coq_constant "le_lt_trans")
let lt_S_n = function () -> (coq_constant "lt_S_n")
let le_n = function () -> (coq_constant "le_n")
let refl_equal = function () -> (coq_constant "refl_equal")
let eq = function () -> (coq_constant "eq")
let ex = function () -> (coq_constant "ex")
let coq_sig_ref = function () -> (find_reference ["Coq";"Init";"Specif"] "sig")
let coq_sig = function () -> (coq_constant "sig")
let coq_O = function () -> (coq_constant "O")
let coq_S = function () -> (coq_constant "S")
let gt_antirefl = function () -> (coq_constant "gt_irrefl")
let lt_n_O = function () -> (coq_constant "lt_n_O")
let lt_n_Sn = function () -> (coq_constant "lt_n_Sn")
let f_equal = function () -> (coq_constant "f_equal")
let well_founded_induction = function () -> (coq_constant "well_founded_induction")
let well_founded = function () -> (coq_constant "well_founded")
let acc_rel = function () -> (coq_constant "Acc")
let acc_inv_id = function () -> (coq_constant "Acc_inv")
let well_founded_ltof = function () -> (Coqlib.coq_constant "" ["Arith";"Wf_nat"] "well_founded_ltof")
let iter_ref = function () -> (try find_reference ["Recdef"] "iter" with Not_found -> error "module Recdef not loaded")
let max_ref = function () -> (find_reference ["Recdef"] "max")
let iter = function () -> (constr_of_reference (delayed_force iter_ref))
let max_constr = function () -> (constr_of_reference (delayed_force max_ref))
let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof")
let coq_conj = function () -> find_reference ["Coq";"Init";"Logic"] "conj"
(* These are specific to experiments in nat with lt as well_founded_relation, *)
(* but this should be made more general. *)
let nat = function () -> (coq_constant "nat")
let lt = function () -> (coq_constant "lt")
(* This is simply an implementation of the case_eq tactic. this code
should be replaced with the tactic defined in Ltac in Init/Tactics.v *)
let mkCaseEq a : tactic =
(fun g ->
let type_of_a = pf_type_of g a in
tclTHENLIST
[h_generalize [mkApp(delayed_force refl_equal, [| type_of_a; a|])];
fun g2 ->
change_in_concl None
(pattern_occs [([-1], a)] (pf_env g2) Evd.empty (pf_concl g2))
g2;
simplest_case a] g);;
(* This is like the previous one except that it also rewrite on all
hypotheses except the ones given in the first argument. All the
modified hypotheses are generalized in the process and should be
introduced back later; the result is the pair of the tactic and the
list of hypotheses that have been generalized and cleared. *)
let mkDestructEq :
identifier list -> constr -> goal sigma -> tactic * identifier list =
fun not_on_hyp expr g ->
let hyps = pf_hyps g in
let to_revert =
Util.map_succeed
(fun (id,_,t) ->
if List.mem id not_on_hyp || not (Termops.occur_term expr t)
then failwith "is_expr_context";
id) hyps in
let to_revert_constr = List.rev_map mkVar to_revert in
let type_of_expr = pf_type_of g expr in
let new_hyps = mkApp(delayed_force refl_equal, [|type_of_expr; expr|])::
to_revert_constr in
tclTHENLIST
[h_generalize new_hyps;
fun g2 ->
change_in_concl None
(pattern_occs [([-1], expr)] (pf_env g2) Evd.empty (pf_concl g2)) g2;
simplest_case expr], to_revert
let rec mk_intros_and_continue thin_intros (extra_eqn:bool)
cont_function (eqs:constr list) nb_lam (expr:constr) g =
let finalize () = if extra_eqn then
let teq = pf_get_new_id teq_id g in
tclTHENLIST
[ h_intro teq;
thin thin_intros;
h_intros thin_intros;
tclMAP
(fun eq -> tclTRY (Equality.general_rewrite_in true teq eq false))
(List.rev eqs);
(fun g1 ->
let ty_teq = pf_type_of g1 (mkVar teq) in
let teq_lhs,teq_rhs =
let _,args = try destApp ty_teq with _ -> Pp.msgnl (Printer.pr_goal (sig_it g1) ++ fnl () ++ pr_id teq ++ str ":" ++ Printer.pr_lconstr ty_teq); assert false in
args.(1),args.(2)
in
cont_function (mkVar teq::eqs) (replace_term teq_lhs teq_rhs expr) g1
)
]
g
else
tclTHENSEQ[
thin thin_intros;
h_intros thin_intros;
cont_function eqs expr
] g
in
if nb_lam = 0
then finalize ()
else
match kind_of_term expr with
| Lambda (n, _, b) ->
let n1 =
match n with
Name x -> x
| Anonymous -> ano_id
in
let new_n = pf_get_new_id n1 g in
tclTHEN (h_intro new_n)
(mk_intros_and_continue thin_intros extra_eqn cont_function eqs
(pred nb_lam) (subst1 (mkVar new_n) b)) g
| _ ->
assert false
(* finalize () *)
let const_of_ref = function
ConstRef kn -> kn
| _ -> anomaly "ConstRef expected"
let simpl_iter clause =
reduce
(Lazy
{rBeta=true;rIota=true;rZeta= true; rDelta=false;
rConst = [ EvalConstRef (const_of_ref (delayed_force iter_ref))]})
(* (Simpl (Some ([],mkConst (const_of_ref (delayed_force iter_ref))))) *)
clause
(* The boolean value is_mes expresses that the termination is expressed
using a measure function instead of a well-founded relation. *)
let tclUSER tac is_mes l g =
let clear_tac =
match l with
| None -> h_clear true []
| Some l -> tclMAP (fun id -> tclTRY (h_clear false [id])) (List.rev l)
in
tclTHENSEQ
[
clear_tac;
if is_mes
then tclTHEN
(unfold_in_concl [([], evaluable_of_global_reference
(delayed_force ltof_ref))])
tac
else tac
]
g
let list_rewrite (rev:bool) (eqs: constr list) =
tclREPEAT
(List.fold_right
(fun eq i -> tclORELSE (rewriteLR eq) i)
(if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));;
let base_leaf_terminate (func:global_reference) eqs expr =
(* let _ = msgnl (str "entering base_leaf") in *)
(fun g ->
let k',h =
match pf_get_new_ids [k_id;h_id] g with
[k';h] -> k',h
| _ -> assert false
in
tclTHENLIST
[observe_tac "first split" (split (ImplicitBindings [expr]));
observe_tac "second split"
(split (ImplicitBindings [delayed_force coq_O]));
observe_tac "intro k" (h_intro k');
observe_tac "case on k"
(tclTHENS (simplest_case (mkVar k'))
[(tclTHEN (h_intro h)
(tclTHEN (simplest_elim (mkApp (delayed_force gt_antirefl,
[| delayed_force coq_O |])))
default_auto)); tclIDTAC ]);
intros;
simpl_iter onConcl;
unfold_constr func;
list_rewrite true eqs;
default_auto] g);;
(* La fonction est donnee en premier argument a la
fonctionnelle suivie d'autres Lambdas et de Case ...
Pour recuperer la fonction f a partir de la
fonctionnelle *)
let get_f foncl =
match (kind_of_term (def_of_const foncl)) with
Lambda (Name f, _, _) -> f
|_ -> error "la fonctionnelle est mal definie";;
let rec compute_le_proofs = function
[] -> assumption
| a::tl ->
tclORELSE assumption
(tclTHENS
(fun g ->
let le_trans = delayed_force le_trans in
let t_le_trans = compute_renamed_type g le_trans in
let m_id =
let _,_,t = destProd t_le_trans in
let na,_,_ = destProd t in
Nameops.out_name na
in
apply_with_bindings
(le_trans,
ExplicitBindings[dummy_loc,NamedHyp m_id,a])
g)
[compute_le_proofs tl;
tclORELSE (apply (delayed_force le_n)) assumption])
let make_lt_proof pmax le_proof =
tclTHENS
(fun g ->
let le_lt_trans = delayed_force le_lt_trans in
let t_le_lt_trans = compute_renamed_type g le_lt_trans in
let m_id =
let _,_,t = destProd t_le_lt_trans in
let na,_,_ = destProd t in
Nameops.out_name na
in
apply_with_bindings
(le_lt_trans,
ExplicitBindings[dummy_loc,NamedHyp m_id, pmax]) g)
[observe_tac "compute_le_proofs" (compute_le_proofs le_proof);
tclTHENLIST[observe_tac "lt_S_n" (apply (delayed_force lt_S_n)); default_full_auto]];;
let rec list_cond_rewrite k def pmax cond_eqs le_proofs =
match cond_eqs with
[] -> tclIDTAC
| eq::eqs ->
(fun g ->
let t_eq = compute_renamed_type g (mkVar eq) in
let k_id,def_id =
let k_na,_,t = destProd t_eq in
let _,_,t = destProd t in
let def_na,_,_ = destProd t in
Nameops.out_name k_na,Nameops.out_name def_na
in
tclTHENS
(general_rewrite_bindings false
(mkVar eq,
ExplicitBindings[dummy_loc, NamedHyp k_id, mkVar k;
dummy_loc, NamedHyp def_id, mkVar def]) false)
[list_cond_rewrite k def pmax eqs le_proofs;
observe_tac "make_lt_proof" (make_lt_proof pmax le_proofs)] g
)
let rec introduce_all_equalities func eqs values specs bound le_proofs
cond_eqs =
match specs with
[] ->
fun g ->
let ids = pf_ids_of_hyps g in
let s_max = mkApp(delayed_force coq_S, [|bound|]) in
let k = next_global_ident_away true k_id ids in
let ids = k::ids in
let h' = next_global_ident_away true (h'_id) ids in
let ids = h'::ids in
let def = next_global_ident_away true def_id ids in
tclTHENLIST
[observe_tac "introduce_all_equalities_final split" (split (ImplicitBindings [s_max]));
observe_tac "introduce_all_equalities_final intro k" (h_intro k);
tclTHENS
(observe_tac "introduce_all_equalities_final case k" (simplest_case (mkVar k)))
[
tclTHENLIST[h_intro h';
simplest_elim(mkApp(delayed_force lt_n_O,[|s_max|]));
default_full_auto];
tclIDTAC
];
observe_tac "clearing k " (clear [k]);
observe_tac "intros k h' def" (h_intros [k;h';def]);
observe_tac "simple_iter" (simpl_iter onConcl);
observe_tac "unfold functional"
(unfold_in_concl[([1],evaluable_of_global_reference func)]);
observe_tac "rewriting equations"
(list_rewrite true eqs);
observe_tac ("cond rewrite "^(string_of_id k)) (list_cond_rewrite k def bound cond_eqs le_proofs);
observe_tac "refl equal" (apply (delayed_force refl_equal))] g
| spec1::specs ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let p = next_global_ident_away true p_id ids in
let ids = p::ids in
let pmax = next_global_ident_away true pmax_id ids in
let ids = pmax::ids in
let hle1 = next_global_ident_away true hle_id ids in
let ids = hle1::ids in
let hle2 = next_global_ident_away true hle_id ids in
let ids = hle2::ids in
let heq = next_global_ident_away true heq_id ids in
tclTHENLIST
[simplest_elim (mkVar spec1);
list_rewrite true eqs;
h_intros [p; heq];
simplest_elim (mkApp(delayed_force max_constr, [| bound; mkVar p|]));
h_intros [pmax; hle1; hle2];
introduce_all_equalities func eqs values specs
(mkVar pmax) ((mkVar pmax)::le_proofs)
(heq::cond_eqs)] g;;
let string_match s =
try
for i = 0 to 3 do
if String.get s i <> String.get "Acc_" i then failwith "string_match"
done;
with Invalid_argument _ -> failwith "string_match"
let retrieve_acc_var g =
(* Julien: I don't like this version .... *)
let hyps = pf_ids_of_hyps g in
map_succeed
(fun id -> string_match (string_of_id id);id)
hyps
let rec introduce_all_values concl_tac is_mes acc_inv func context_fn
eqs hrec args values specs =
(match args with
[] ->
tclTHENLIST
[observe_tac "split" (split(ImplicitBindings
[context_fn (List.map mkVar (List.rev values))]));
observe_tac "introduce_all_equalities" (introduce_all_equalities func eqs
(List.rev values) (List.rev specs) (delayed_force coq_O) [] [])]
| arg::args ->
(fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let rec_res = next_global_ident_away true rec_res_id ids in
let ids = rec_res::ids in
let hspec = next_global_ident_away true hspec_id ids in
let tac =
observe_tac "introduce_all_values" (
introduce_all_values concl_tac is_mes acc_inv func context_fn eqs
hrec args
(rec_res::values)(hspec::specs)) in
(tclTHENS
(observe_tac "elim h_rec"
(simplest_elim (mkApp(mkVar hrec, Array.of_list arg)))
)
[tclTHENLIST [h_intros [rec_res; hspec];
tac];
(tclTHENS
(observe_tac "acc_inv" (apply (Lazy.force acc_inv)))
[(* tclTHEN (tclTRY(list_rewrite true eqs)) *)
(observe_tac "h_assumption" h_assumption)
;
tclTHENLIST
[
tclTRY(list_rewrite true eqs);
observe_tac "user proof"
(fun g ->
tclUSER
concl_tac
is_mes
(Some (hrec::hspec::(retrieve_acc_var g)@specs))
g
)
]
]
)
]) g)
)
let rec_leaf_terminate concl_tac is_mes acc_inv hrec (func:global_reference) eqs expr =
match find_call_occs 0 (mkVar (get_f (constr_of_reference func))) expr with
| context_fn, args ->
observe_tac "introduce_all_values"
(introduce_all_values concl_tac is_mes acc_inv func context_fn eqs hrec args [] [])
let proveterminate rec_arg_id is_mes acc_inv (hrec:identifier)
(f_constr:constr) (func:global_reference) base_leaf rec_leaf =
let rec proveterminate (eqs:constr list) (expr:constr) =
try
(* let _ = msgnl (str "entering proveterminate") in *)
let v =
match (kind_of_term expr) with
Case (ci, t, a, l) ->
(match find_call_occs 0 f_constr a with
_,[] ->
(fun g ->
let destruct_tac, rev_to_thin_intro =
mkDestructEq rec_arg_id a g in
tclTHENS destruct_tac
(list_map_i
(fun i -> mk_intros_and_continue
(List.rev rev_to_thin_intro)
true
proveterminate
eqs
ci.ci_cstr_nargs.(i))
0 (Array.to_list l)) g)
| _, _::_ ->
(match find_call_occs 0 f_constr expr with
_,[] -> observe_tac "base_leaf" (base_leaf func eqs expr)
| _, _:: _ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)))
| _ ->
(match find_call_occs 0 f_constr expr with
_,[] ->
(try observe_tac "base_leaf" (base_leaf func eqs expr)
with e -> (msgerrnl (str "failure in base case");raise e ))
| _, _::_ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)) in
v
with e -> begin msgerrnl(str "failure in proveterminate"); raise e end
in
proveterminate
let hyp_terminates nb_args func =
let a_arrow_b = arg_type (constr_of_reference func) in
let rev_args,b = decompose_prod_n nb_args a_arrow_b in
let left =
mkApp(delayed_force iter,
Array.of_list
(lift 5 a_arrow_b:: mkRel 3::
constr_of_reference func::mkRel 1::
List.rev (list_map_i (fun i _ -> mkRel (6+i)) 0 rev_args)
)
)
in
let right = mkRel 5 in
let equality = mkApp(delayed_force eq, [|lift 5 b; left; right|]) in
let result = (mkProd ((Name def_id) , lift 4 a_arrow_b, equality)) in
let cond = mkApp(delayed_force lt, [|(mkRel 2); (mkRel 1)|]) in
let nb_iter =
mkApp(delayed_force ex,
[|delayed_force nat;
(mkLambda
(Name
p_id,
delayed_force nat,
(mkProd (Name k_id, delayed_force nat,
mkArrow cond result))))|])in
let value = mkApp(delayed_force coq_sig,
[|b;
(mkLambda (Name v_id, b, nb_iter))|]) in
compose_prod rev_args value
let tclUSER_if_not_mes concl_tac is_mes names_to_suppress =
if is_mes
then tclCOMPLETE (h_simplest_apply (delayed_force well_founded_ltof))
else tclUSER concl_tac is_mes names_to_suppress
let termination_proof_header is_mes input_type ids args_id relation
rec_arg_num rec_arg_id tac wf_tac : tactic =
begin
fun g ->
let nargs = List.length args_id in
let pre_rec_args =
List.rev_map
mkVar (fst (list_chop (rec_arg_num - 1) args_id))
in
let relation = substl pre_rec_args relation in
let input_type = substl pre_rec_args input_type in
let wf_thm = next_global_ident_away true (id_of_string ("wf_R")) ids in
let wf_rec_arg =
next_global_ident_away true
(id_of_string ("Acc_"^(string_of_id rec_arg_id)))
(wf_thm::ids)
in
let hrec = next_global_ident_away true hrec_id
(wf_rec_arg::wf_thm::ids) in
let acc_inv =
lazy (
mkApp (
delayed_force acc_inv_id,
[|input_type;relation;mkVar rec_arg_id|]
)
)
in
tclTHEN
(h_intros args_id)
(tclTHENS
(observe_tac
"first assert"
(assert_tac
true (* the assert thm is in first subgoal *)
(Name wf_rec_arg)
(mkApp (delayed_force acc_rel,
[|input_type;relation;mkVar rec_arg_id|])
)
)
)
[
(* accesibility proof *)
tclTHENS
(observe_tac
"second assert"
(assert_tac
true
(Name wf_thm)
(mkApp (delayed_force well_founded,[|input_type;relation|]))
)
)
[
(* interactive proof that the relation is well_founded *)
observe_tac "wf_tac" (wf_tac is_mes (Some args_id));
(* this gives the accessibility argument *)
observe_tac
"apply wf_thm"
(h_simplest_apply (mkApp(mkVar wf_thm,[|mkVar rec_arg_id|]))
)
]
;
(* rest of the proof *)
tclTHENSEQ
[observe_tac "generalize"
(onNLastHyps (nargs+1)
(fun (id,_,_) ->
tclTHEN (h_generalize [mkVar id]) (h_clear false [id])
))
;
observe_tac "h_fix" (h_fix (Some hrec) (nargs+1));
h_intros args_id;
h_intro wf_rec_arg;
observe_tac "tac" (tac wf_rec_arg hrec acc_inv)
]
]
) g
end
let rec instantiate_lambda t l =
match l with
| [] -> t
| a::l ->
let (bound_name, _, body) = destLambda t in
instantiate_lambda (subst1 a body) l
;;
let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_arg_num : tactic =
begin
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let func_body = (def_of_const (constr_of_reference func)) in
let (f_name, _, body1) = destLambda func_body in
let f_id =
match f_name with
| Name f_id -> next_global_ident_away true f_id ids
| Anonymous -> anomaly "Anonymous function"
in
let n_names_types,_ = decompose_lam_n nb_args body1 in
let n_ids,ids =
List.fold_left
(fun (n_ids,ids) (n_name,_) ->
match n_name with
| Name id ->
let n_id = next_global_ident_away true id ids in
n_id::n_ids,n_id::ids
| _ -> anomaly "anonymous argument"
)
([],(f_id::ids))
n_names_types
in
let rec_arg_id = List.nth n_ids (rec_arg_num - 1) in
let expr = instantiate_lambda func_body (mkVar f_id::(List.map mkVar n_ids)) in
termination_proof_header
is_mes
input_type
ids
n_ids
relation
rec_arg_num
rec_arg_id
(fun rec_arg_id hrec acc_inv g ->
(proveterminate
[rec_arg_id]
is_mes
acc_inv
hrec
(mkVar f_id)
func
base_leaf_terminate
(rec_leaf_terminate concl_tac)
[]
expr
)
g
)
(tclUSER_if_not_mes concl_tac)
g
end
let get_current_subgoals_types () =
let pts = get_pftreestate () in
let _,subs = extract_open_pftreestate pts in
List.map snd (List.sort (fun (x,_) (y,_) -> x -y )subs )
let build_and_l l =
let and_constr = Coqlib.build_coq_and () in
let conj_constr = coq_conj () in
let mk_and p1 p2 =
Term.mkApp(and_constr,[|p1;p2|]) in
let rec f = function
| [] -> failwith "empty list of subgoals!"
| [p] -> p,tclIDTAC,1
| p1::pl ->
let c,tac,nb = f pl in
mk_and p1 c,
tclTHENS
(apply (constr_of_reference conj_constr))
[tclIDTAC;
tac
],nb+1
in f l
let is_rec_res id =
let rec_res_name = string_of_id rec_res_id in
let id_name = string_of_id id in
try
String.sub id_name 0 (String.length rec_res_name) = rec_res_name
with _ -> false
let clear_goals =
let rec clear_goal t =
match kind_of_term t with
| Prod(Name id as na,t,b) ->
let b' = clear_goal b in
if noccurn 1 b' && (is_rec_res id)
then pop b'
else if b' == b then t
else mkProd(na,t,b')
| _ -> map_constr clear_goal t
in
List.map clear_goal
let build_new_goal_type () =
let sub_gls_types = get_current_subgoals_types () in
let sub_gls_types = clear_goals sub_gls_types in
let res = build_and_l sub_gls_types in
res
let prove_with_tcc lemma _ : tactic =
fun gls ->
let hid = next_global_ident_away true h_id (pf_ids_of_hyps gls) in
tclTHENSEQ
[
h_generalize [lemma];
h_intro hid;
Elim.h_decompose_and (mkVar hid);
gen_eauto(* default_eauto *) false (false,5) [] (Some [])
(* default_auto *)
]
gls
let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref goal_name (gls_type,decompose_and_tac,nb_goal) =
let current_proof_name = get_current_proof_name () in
let name = match goal_name with
| Some s -> s
| None ->
try (add_suffix current_proof_name "_subproof")
with _ -> anomaly "open_new_goal with an unamed theorem"
in
let sign = Global.named_context () in
let sign = clear_proofs sign in
let na = next_global_ident_away false name [] in
if occur_existential gls_type then
Util.error "\"abstract\" cannot handle existentials";
let hook _ _ =
let opacity =
let na_ref = Libnames.Ident (dummy_loc,na) in
let na_global = Nametab.global na_ref in
match na_global with
ConstRef c ->
let cb = Global.lookup_constant c in
if cb.Declarations.const_opaque then true
else begin match cb.const_body with None -> true | _ -> false end
| _ -> anomaly "equation_lemma: not a constant"
in
let lemma = mkConst (Lib.make_con na) in
(* Array.iteri *)
(* (fun i _ -> *)
(* by (observe_tac ("reusing lemma "^(string_of_id na)) (prove_with_tcc lemma (nb_goal - i)))) *)
(* (Array.make nb_goal ()) *)
(* ; *)
ref := Some lemma ;
Options.silently Vernacentries.interp (Vernacexpr.VernacAbort None);
build_proof
( fun gls ->
let hid = next_global_ident_away true h_id (pf_ids_of_hyps gls) in
tclTHENSEQ
[
h_generalize [lemma];
h_intro hid;
Elim.h_decompose_and (mkVar hid);
] gls)
(gen_eauto(* default_eauto *) false (false,5) [] (Some []));
Command.save_named opacity;
in
start_proof
na
(Decl_kinds.Global, Decl_kinds.Proof Decl_kinds.Lemma)
sign
gls_type
hook ;
by (
fun g ->
tclTHEN
(decompose_and_tac)
(tclORELSE
(tclFIRST
(List.map
(fun c ->
tclTHENSEQ
[intros;
h_simplest_apply (interp_constr Evd.empty (Global.env()) c);
tclCOMPLETE Auto.default_auto
]
)
using_lemmas)
) tclIDTAC)
g);
try
by tclIDTAC; (* raises UserError _ if the proof is complete *)
if Options.is_verbose () then (pp (Printer.pr_open_subgoals()))
with UserError _ ->
defined ()
;;
let com_terminate
tcc_lemma_name
tcc_lemma_ref
is_mes
fonctional_ref
input_type
relation
rec_arg_num
thm_name using_lemmas
nb_args
hook =
let start_proof (tac_start:tactic) (tac_end:tactic) =
let (evmap, env) = Command.get_current_context() in
start_proof thm_name
(Global, Proof Lemma) (Environ.named_context_val env)
(hyp_terminates nb_args fonctional_ref) hook;
by (observe_tac "starting_tac" tac_start);
by (observe_tac "whole_start" (whole_start tac_end nb_args is_mes fonctional_ref
input_type relation rec_arg_num ))
in
start_proof tclIDTAC tclIDTAC;
try
let new_goal_type = build_new_goal_type () in
open_new_goal start_proof using_lemmas tcc_lemma_ref
(Some tcc_lemma_name)
(new_goal_type)
with Failure "empty list of subgoals!" ->
(* a non recursive function declared with measure ! *)
defined ()
let ind_of_ref = function
| IndRef (ind,i) -> (ind,i)
| _ -> anomaly "IndRef expected"
let (value_f:constr list -> global_reference -> constr) =
fun al fterm ->
let d0 = dummy_loc in
let rev_x_id_l =
(
List.fold_left
(fun x_id_l _ ->
let x_id = next_global_ident_away true x_id x_id_l in
x_id::x_id_l
)
[]
al
)
in
let fun_body =
RCases
(d0,None,
[RApp(d0, RRef(d0,fterm), List.rev_map (fun x_id -> RVar(d0, x_id)) rev_x_id_l),
(Anonymous,None)],
[d0, [v_id], [PatCstr(d0,(ind_of_ref
(delayed_force coq_sig_ref),1),
[PatVar(d0, Name v_id);
PatVar(d0, Anonymous)],
Anonymous)],
RVar(d0,v_id)])
in
let value =
List.fold_left2
(fun acc x_id a ->
RLambda
(d0, Name x_id, RDynamic(d0, constr_in a),
acc
)
)
fun_body
rev_x_id_l
(List.rev al)
in
understand Evd.empty (Global.env()) value;;
let (declare_fun : identifier -> logical_kind -> constr -> global_reference) =
fun f_id kind value ->
let ce = {const_entry_body = value;
const_entry_type = None;
const_entry_opaque = false;
const_entry_boxed = true} in
ConstRef(declare_constant f_id (DefinitionEntry ce, kind));;
let (declare_f : identifier -> logical_kind -> constr list -> global_reference -> global_reference) =
fun f_id kind input_type fterm_ref ->
declare_fun f_id kind (value_f input_type fterm_ref);;
let rec n_x_id ids n =
if n = 0 then []
else let x = next_global_ident_away true x_id ids in
x::n_x_id (x::ids) (n-1);;
let start_equation (f:global_reference) (term_f:global_reference)
(cont_tactic:identifier list -> tactic) g =
let ids = pf_ids_of_hyps g in
let terminate_constr = constr_of_reference term_f in
let nargs = nb_prod (type_of_const terminate_constr) in
let x = n_x_id ids nargs in
tclTHENLIST [
h_intros x;
unfold_in_concl [([], evaluable_of_global_reference f)];
observe_tac "simplest_case"
(simplest_case (mkApp (terminate_constr,
Array.of_list (List.map mkVar x))));
observe_tac "prove_eq" (cont_tactic x)] g;;
let base_leaf_eq func eqs f_id g =
let ids = pf_ids_of_hyps g in
let k = next_global_ident_away true k_id ids in
let p = next_global_ident_away true p_id (k::ids) in
let v = next_global_ident_away true v_id (p::k::ids) in
let heq = next_global_ident_away true heq_id (v::p::k::ids) in
let heq1 = next_global_ident_away true heq_id (heq::v::p::k::ids) in
let hex = next_global_ident_away true hex_id (heq1::heq::v::p::k::ids) in
tclTHENLIST [
h_intros [v; hex];
simplest_elim (mkVar hex);
h_intros [p;heq1];
tclTRY
(rewriteRL
(mkApp(mkVar heq1,
[|mkApp (delayed_force coq_S, [|mkVar p|]);
mkApp(delayed_force lt_n_Sn, [|mkVar p|]); f_id|])));
simpl_iter onConcl;
tclTRY (unfold_in_concl [([1], evaluable_of_global_reference func)]);
list_rewrite true eqs;
apply (delayed_force refl_equal)] g;;
let f_S t = mkApp(delayed_force coq_S, [|t|]);;
let rec introduce_all_values_eq cont_tac functional termine
f p heq1 pmax bounds le_proofs eqs ids =
function
[] ->
let heq2 = next_global_ident_away true heq_id ids in
tclTHENLIST
[forward None (IntroIdentifier heq2)
(mkApp(mkVar heq1, [|f_S(f_S(mkVar pmax))|]));
simpl_iter (onHyp heq2);
unfold_in_hyp [([1], evaluable_of_global_reference
(reference_of_constr functional))]
(([], heq2), Tacexpr.InHyp);
tclTHENS
(fun gls ->
let t_eq = compute_renamed_type gls (mkVar heq2) in
let def_id =
let _,_,t = destProd t_eq in let def_na,_,_ = destProd t in
Nameops.out_name def_na
in
observe_tac "rewrite heq" (general_rewrite_bindings false
(mkVar heq2,
ExplicitBindings[dummy_loc,NamedHyp def_id,
f]) false) gls)
[tclTHENLIST
[observe_tac "list_rewrite" (list_rewrite true eqs);
cont_tac pmax le_proofs];
tclTHENLIST[apply (delayed_force le_lt_SS);
compute_le_proofs le_proofs]]]
| arg::args ->
let v' = next_global_ident_away true v_id ids in
let ids = v'::ids in
let hex' = next_global_ident_away true hex_id ids in
let ids = hex'::ids in
let p' = next_global_ident_away true p_id ids in
let ids = p'::ids in
let new_pmax = next_global_ident_away true pmax_id ids in
let ids = pmax::ids in
let hle1 = next_global_ident_away true hle_id ids in
let ids = hle1::ids in
let hle2 = next_global_ident_away true hle_id ids in
let ids = hle2::ids in
let heq = next_global_ident_away true heq_id ids in
let ids = heq::ids in
let heq2 = next_global_ident_away true heq_id ids in
let ids = heq2::ids in
tclTHENLIST
[mkCaseEq(mkApp(termine, Array.of_list arg));
h_intros [v'; hex'];
simplest_elim(mkVar hex');
h_intros [p'];
simplest_elim(mkApp(delayed_force max_constr, [|mkVar pmax;
mkVar p'|]));
h_intros [new_pmax;hle1;hle2];
introduce_all_values_eq
(fun pmax' le_proofs'->
tclTHENLIST
[cont_tac pmax' le_proofs';
h_intros [heq;heq2];
observe_tac ("rewriteRL " ^ (string_of_id heq2))
(tclTRY (rewriteLR (mkVar heq2)));
tclTRY (tclTHENS
( fun g ->
let t_eq = compute_renamed_type g (mkVar heq) in
let k_id,def_id =
let k_na,_,t = destProd t_eq in
let _,_,t = destProd t in
let def_na,_,_ = destProd t in
Nameops.out_name k_na,Nameops.out_name def_na
in
let c_b = (mkVar heq,
ExplicitBindings
[dummy_loc, NamedHyp k_id,
f_S(mkVar pmax');
dummy_loc, NamedHyp def_id, f])
in
observe_tac "general_rewrite_bindings" ( (general_rewrite_bindings false
c_b false))
g
)
[tclIDTAC;
tclTHENLIST
[apply (delayed_force le_lt_n_Sm);
compute_le_proofs le_proofs']])])
functional termine f p heq1 new_pmax
(p'::bounds)((mkVar pmax)::le_proofs) eqs
(heq2::heq::hle2::hle1::new_pmax::p'::hex'::v'::ids) args]
let rec_leaf_eq termine f ids functional eqs expr fn args =
let p = next_global_ident_away true p_id ids in
let ids = p::ids in
let v = next_global_ident_away true v_id ids in
let ids = v::ids in
let hex = next_global_ident_away true hex_id ids in
let ids = hex::ids in
let heq1 = next_global_ident_away true heq_id ids in
let ids = heq1::ids in
let hle1 = next_global_ident_away true hle_id ids in
let ids = hle1::ids in
tclTHENLIST
[observe_tac "intros v hex" (h_intros [v;hex]);
simplest_elim (mkVar hex);
h_intros [p;heq1];
h_generalize [mkApp(delayed_force le_n,[|mkVar p|])];
h_intros [hle1];
observe_tac "introduce_all_values_eq" (introduce_all_values_eq
(fun _ _ -> tclIDTAC)
functional termine f p heq1 p [] [] eqs ids args);
observe_tac "failing here" (apply (delayed_force refl_equal))]
let rec prove_eq (termine:constr) (f:constr)(functional:global_reference)
(eqs:constr list) (expr:constr) =
(* tclTRY *)
(match kind_of_term expr with
Case(ci,t,a,l) ->
(match find_call_occs 0 f a with
_,[] ->
(fun g ->
let destruct_tac,rev_to_thin_intro = mkDestructEq [] a g in
tclTHENS
(tclTHEN destruct_tac
(list_map_i
(fun i -> mk_intros_and_continue
(List.rev rev_to_thin_intro) true
(prove_eq termine f functional)
eqs ci.ci_cstr_nargs.(i))
0 (Array.to_list l)) g)
| _,_::_ ->
(match find_call_occs 0 f expr with
_,[] -> base_leaf_eq functional eqs f
| fn,args ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
rec_leaf_eq termine f ids
(constr_of_reference functional)
eqs expr fn args g))
| _ ->
(match find_call_occs 0 f expr with
_,[] -> base_leaf_eq functional eqs f
| fn,args ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
observe_tac "rec_leaf_eq" (rec_leaf_eq
termine f ids (constr_of_reference functional)
eqs expr fn args) g));;
let (com_eqn : identifier ->
global_reference -> global_reference -> global_reference
-> constr -> unit) =
fun eq_name functional_ref f_ref terminate_ref equation_lemma_type ->
let opacity =
match terminate_ref with
| ConstRef c ->
let cb = Global.lookup_constant c in
if cb.Declarations.const_opaque then true
else begin match cb.const_body with None -> true | _ -> false end
| _ -> anomaly "terminate_lemma: not a constant"
in
let (evmap, env) = Command.get_current_context() in
let f_constr = (constr_of_reference f_ref) in
let equation_lemma_type = subst1 f_constr equation_lemma_type in
(start_proof eq_name (Global, Proof Lemma)
(Environ.named_context_val env) equation_lemma_type (fun _ _ -> ());
by
(start_equation f_ref terminate_ref
(fun x ->
prove_eq
(constr_of_reference terminate_ref)
f_constr
functional_ref
[]
(instantiate_lambda
(def_of_const (constr_of_reference functional_ref))
(f_constr::List.map mkVar x)
)
)
);
(* (try Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowProof) with _ -> ()); *)
(* Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowScript); *)
Options.silently (fun () ->Command.save_named opacity) () ;
(* Pp.msgnl (str "eqn finished"); *)
);;
let nf_zeta env =
Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])
env
Evd.empty
let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num eq
generate_induction_principle using_lemmas : unit =
let function_type = interp_constr Evd.empty (Global.env()) type_of_f in
let env = push_named (function_name,None,function_type) (Global.env()) in
(* Pp.msgnl (str "function type := " ++ Printer.pr_lconstr function_type); *)
let equation_lemma_type = interp_gen (OfType None) Evd.empty env ~impls:([],rec_impls) eq in
(* Pp.msgnl (Printer.pr_lconstr equation_lemma_type); *)
let res_vars,eq' = decompose_prod equation_lemma_type in
let env_eq' = Environ.push_rel_context (List.map (fun (x,y) -> (x,None,y)) res_vars) env in
let eq' = nf_zeta env_eq' eq' in
let res =
(* Pp.msgnl (str "res_var :=" ++ Printer.pr_lconstr_env (push_rel_context (List.map (function (x,t) -> (x,None,t)) res_vars) env) eq'); *)
(* Pp.msgnl (str "rec_arg_num := " ++ str (string_of_int rec_arg_num)); *)
(* Pp.msgnl (str "eq' := " ++ str (string_of_int rec_arg_num)); *)
match kind_of_term eq' with
| App(e,[|_;_;eq_fix|]) ->
mkLambda (Name function_name,function_type,subst_var function_name (compose_lam res_vars eq_fix))
| _ -> failwith "Recursive Definition (res not eq)"
in
let pre_rec_args,function_type_before_rec_arg = decompose_prod_n (rec_arg_num - 1) function_type in
let (_, rec_arg_type, _) = destProd function_type_before_rec_arg in
let arg_types = List.rev_map snd (fst (decompose_prod_n (List.length res_vars) function_type)) in
let equation_id = add_suffix function_name "_equation" in
let functional_id = add_suffix function_name "_F" in
let term_id = add_suffix function_name "_terminate" in
let functional_ref = declare_fun functional_id (IsDefinition Definition) res in
let env_with_pre_rec_args = push_rel_context(List.map (function (x,t) -> (x,None,t)) pre_rec_args) env in
let relation =
interp_constr
Evd.empty
env_with_pre_rec_args
r
in
let tcc_lemma_name = add_suffix function_name "_tcc" in
let tcc_lemma_constr = ref None in
(* let _ = Pp.msgnl (str "relation := " ++ Printer.pr_lconstr_env env_with_pre_rec_args relation) in *)
let hook _ _ =
let term_ref = Nametab.locate (make_short_qualid term_id) in
let f_ref = declare_f function_name (IsProof Lemma) arg_types term_ref in
(* message "start second proof"; *)
let stop = ref false in
begin
try com_eqn equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type)
with e ->
begin
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
then pperrnl (str "Cannot create equation Lemma " ++ Cerrors.explain_exn e)
else anomaly "Cannot create equation Lemma"
;
(* ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ()); *)
stop := true;
end
end;
if not !stop
then
let eq_ref = Nametab.locate (make_short_qualid equation_id ) in
let f_ref = destConst (constr_of_reference f_ref)
and functional_ref = destConst (constr_of_reference functional_ref)
and eq_ref = destConst (constr_of_reference eq_ref) in
generate_induction_principle f_ref tcc_lemma_constr
functional_ref eq_ref rec_arg_num rec_arg_type (nb_prod res) relation;
if Options.is_verbose ()
then msgnl (h 1 (Ppconstr.pr_id function_name ++
spc () ++ str"is defined" )++ fnl () ++
h 1 (Ppconstr.pr_id equation_id ++
spc () ++ str"is defined" )
)
in
try
com_terminate
tcc_lemma_name
tcc_lemma_constr
is_mes functional_ref
rec_arg_type
relation rec_arg_num
term_id
using_lemmas
(List.length res_vars)
hook
with e ->
begin
ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ());
(* anomaly "Cannot create termination Lemma" *)
raise e
end
VERNAC COMMAND EXTEND RecursiveDefinition
[ "Recursive" "Definition" ident(f) constr(type_of_f) constr(r) constr(wf)
constr(proof) integer_opt(rec_arg_num) constr(eq) ] ->
[
warning "Recursive Definition is obsolete. Use Function instead";
ignore(proof);ignore(wf);
let rec_arg_num =
match rec_arg_num with
| None -> 1
| Some n -> n
in
recursive_definition false f [] type_of_f r rec_arg_num eq (fun _ _ _ _ _ _ _ _ -> ()) []]
| [ "Recursive" "Definition" ident(f) constr(type_of_f) constr(r) constr(wf)
"[" ne_constr_list(proof) "]" constr(eq) ] ->
[ ignore(proof);ignore(wf);recursive_definition false f [] type_of_f r 1 eq (fun _ _ _ _ _ _ _ _ -> ()) []]
END
|