1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Term
open Termops
open Environ
open Declarations
open Entries
open Pp
open Names
open Libnames
open Nameops
open Util
open Closure
open RedFlags
open Tacticals
open Typing
open Tacmach
open Tactics
open Nametab
open Declare
open Decl_kinds
open Tacred
open Proof_type
open Vernacinterp
open Pfedit
open Topconstr
open Rawterm
open Pretyping
open Safe_typing
open Constrintern
open Equality
open Auto
open Eauto
open Genarg
let observe_tac s tac g =
msgnl (Printer.pr_goal (sig_it g));
try let v = tac g in msgnl ((str s)++(str " ")++(str "finished")); v
with e ->
msgnl (str "observation "++str s++str " raised an exception"); raise e;;
let hyp_ids = List.map id_of_string
["x";"v";"k";"def";"p";"h";"n";"h'"; "anonymous"; "teq"; "rec_res";
"hspec";"heq"; "hrec"; "hex"; "teq"; "pmax";"hle"];;
let rec nthtl = function
l, 0 -> l | _::tl, n -> nthtl (tl, n-1) | [], _ -> [];;
let hyp_id n l = List.nth l n;;
let (x_id:identifier) = hyp_id 0 hyp_ids;;
let (v_id:identifier) = hyp_id 1 hyp_ids;;
let (k_id:identifier) = hyp_id 2 hyp_ids;;
let (def_id:identifier) = hyp_id 3 hyp_ids;;
let (p_id:identifier) = hyp_id 4 hyp_ids;;
let (h_id:identifier) = hyp_id 5 hyp_ids;;
let (n_id:identifier) = hyp_id 6 hyp_ids;;
let (h'_id:identifier) = hyp_id 7 hyp_ids;;
let (ano_id:identifier) = hyp_id 8 hyp_ids;;
let (rec_res_id:identifier) = hyp_id 10 hyp_ids;;
let (hspec_id:identifier) = hyp_id 11 hyp_ids;;
let (heq_id:identifier) = hyp_id 12 hyp_ids;;
let (hrec_id:identifier) = hyp_id 13 hyp_ids;;
let (hex_id:identifier) = hyp_id 14 hyp_ids;;
let (teq_id:identifier) = hyp_id 15 hyp_ids;;
let (pmax_id:identifier) = hyp_id 16 hyp_ids;;
let (hle_id:identifier) = hyp_id 17 hyp_ids;;
let message s = if Options.is_verbose () then msgnl(str s);;
let def_of_const t =
match (kind_of_term t) with
Const sp ->
(try (match (Global.lookup_constant sp) with
{const_body=Some c} -> Declarations.force c
|_ -> assert false)
with _ -> assert false)
|_ -> assert false
let arg_type t =
match kind_of_term (def_of_const t) with
Lambda(a,b,c) -> b
| _ -> assert false;;
let evaluable_of_global_reference r =
match r with
ConstRef sp -> EvalConstRef sp
| VarRef id -> EvalVarRef id
| _ -> assert false;;
let rec (find_call_occs:
constr -> constr -> (constr list->constr)*(constr list)) =
fun f expr ->
match (kind_of_term expr) with
App (g, args) when g = f ->
(* For now we suppose that the function takes only one argument. *)
(fun l -> List.hd l), [args.(0)]
| App (g, args) ->
let (largs: constr list) = Array.to_list args in
let rec find_aux = function
[] -> (fun x -> []), []
| a::tl ->
(match find_aux tl with
(cf, ((arg1::args) as opt_args)) ->
(match find_call_occs f a with
cf2, (_ :: _ as other_args) ->
let len1 = List.length other_args in
(fun l ->
cf2 l::(cf (nthtl(l,len1)))), other_args@opt_args
| _, [] -> (fun x -> a::cf x), opt_args)
| _, [] ->
(match find_call_occs f a with
cf, (arg1::args) -> (fun l -> cf l::tl), (arg1::args)
| _, [] -> (fun x -> a::tl), [])) in
(match (find_aux largs) with
cf, [] -> (fun l -> mkApp(g, args)), []
| cf, arg::args ->
(fun l -> mkApp (g, Array.of_list (cf l))), (arg::args))
| Rel(_) -> error "find_call_occs : Rel"
| Var(id) -> (fun l -> expr), []
| Meta(_) -> error "find_call_occs : Meta"
| Evar(_) -> error "find_call_occs : Evar"
| Sort(_) -> error "find_call_occs : Sort"
| Cast(_,_) -> error "find_call_occs : cast"
| Prod(_,_,_) -> error "find_call_occs : Prod"
| Lambda(_,_,_) -> error "find_call_occs : Lambda"
| LetIn(_,_,_,_) -> error "find_call_occs : let in"
| Const(_) -> (fun l -> expr), []
| Ind(_) -> (fun l -> expr), []
| Construct (_, _) -> (fun l -> expr), []
| Case(i,t,a,r) ->
(match find_call_occs f a with
cf, (arg1::args) -> (fun l -> mkCase(i, t, (cf l), r)),(arg1::args)
| _ -> (fun l -> mkCase(i, t, a, r)),[])
| Fix(_) -> error "find_call_occs : Fix"
| CoFix(_) -> error "find_call_occs : CoFix";;
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
(Coqlib.init_modules @ Coqlib.arith_modules) s;;
let constant sl s =
constr_of_reference
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let find_reference sl s =
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let le_lt_SS = lazy(constant ["Recdef"] "le_lt_SS")
let le_lt_n_Sm = lazy(coq_constant "le_lt_n_Sm")
let le_trans = lazy(coq_constant "le_trans")
let le_lt_trans = lazy(coq_constant "le_lt_trans")
let lt_S_n = lazy(coq_constant "lt_S_n")
let le_n = lazy(coq_constant "le_n")
let refl_equal = lazy(coq_constant "refl_equal")
let eq = lazy(coq_constant "eq")
let ex = lazy(coq_constant "ex")
let coq_sig_ref = lazy(find_reference ["Coq";"Init";"Specif"] "sig")
let coq_sig = lazy(coq_constant "sig")
let coq_O = lazy(coq_constant "O")
let coq_S = lazy(coq_constant "S")
let gt_antirefl = lazy(coq_constant "gt_antirefl")
let lt_n_O = lazy(coq_constant "lt_n_O")
let lt_n_Sn = lazy(coq_constant "lt_n_Sn")
let f_equal = lazy(coq_constant "f_equal")
let well_founded_induction = lazy(coq_constant "well_founded_induction")
let iter_ref = lazy(find_reference ["Recdef"] "iter")
let max_ref = lazy(find_reference ["Recdef"] "max")
let iter = lazy(constr_of_reference (Lazy.force iter_ref))
let max_constr = lazy(constr_of_reference (Lazy.force max_ref))
(* These are specific to experiments in nat with lt as well_founded_relation,
but this should be made more general. *)
let nat = lazy(coq_constant "nat")
let lt = lazy(coq_constant "lt")
let mkCaseEq a =
(fun g ->
(* commentaire de Yves: on pourra avoir des problemes si
a n'est pas bien type dans l'environnement du but *)
let type_of_a = (type_of (pf_env g) Evd.empty a) in
(tclTHEN (generalize [mkApp(Lazy.force refl_equal, [| type_of_a; a|])])
(tclTHEN
(fun g2 ->
change_in_concl None
(pattern_occs [([2], a)] (pf_env g2) Evd.empty (pf_concl g2))
g2)
(simplest_case a))) g);;
let rec mk_intros_and_continue (extra_eqn:bool)
cont_function (eqs:constr list) (expr:constr) g =
let ids=ids_of_named_context (pf_hyps g) in
match kind_of_term expr with
Lambda (n, _, b) ->
let n1 = (match n with
Name x -> x
| Anonymous -> ano_id ) in
let new_n = next_ident_away n1 ids in
tclTHEN (intro_using new_n)
(mk_intros_and_continue extra_eqn cont_function eqs
(subst1 (mkVar new_n) b)) g
| _ ->
if extra_eqn then
let teq = next_ident_away teq_id ids in
tclTHEN (intro_using teq)
(cont_function (mkVar teq::eqs) expr) g
else
cont_function eqs expr g;;
let const_of_ref = function
ConstRef kn -> kn
| _ -> anomaly "ConstRef expected"
let simpl_iter () =
reduce
(Lazy
{rBeta=true;rIota=true;rZeta= true; rDelta=false;
rConst = [ EvalConstRef (const_of_ref (Lazy.force iter_ref))]})
onConcl;;
let list_rewrite (rev:bool) (eqs: constr list) =
tclREPEAT
(List.fold_right
(fun eq i -> tclORELSE (rewriteLR eq) i)
(if rev then (List.rev eqs) else eqs) (tclFAIL 0 ""));;
let base_leaf (func:global_reference) eqs expr =
(* let _ = msgnl (str "entering base_leaf") in *)
(fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let k = next_ident_away k_id ids in
let h = next_ident_away h_id (k::ids) in
tclTHENLIST [split (ImplicitBindings [expr]);
split (ImplicitBindings [Lazy.force coq_O]);
intro_using k;
tclTHENS (simplest_case (mkVar k))
[(tclTHEN (intro_using h)
(tclTHEN (simplest_elim
(mkApp (Lazy.force gt_antirefl,
[| Lazy.force coq_O |])))
default_full_auto)); tclIDTAC];
intros;
simpl_iter();
unfold_constr func;
list_rewrite true eqs;
default_full_auto ] g);;
(* La fonction est donnee en premier argument a la
fonctionnelle suivie d'autres Lambdas et de Case ...
Pour recuperer la fonction f a partir de la
fonctionnelle *)
let get_f foncl =
match (kind_of_term (def_of_const foncl)) with
Lambda (Name f, _, _) -> f
|_ -> error "la fonctionnelle est mal definie";;
let rec compute_le_proofs = function
[] -> assumption
| a::tl ->
tclORELSE assumption
(tclTHENS
(apply_with_bindings
(Lazy.force le_trans,
ExplicitBindings[dummy_loc,NamedHyp(id_of_string "m"),a]))
[compute_le_proofs tl;
tclORELSE (apply (Lazy.force le_n)) assumption])
let make_lt_proof pmax le_proof =
tclTHENS
(apply_with_bindings
(Lazy.force le_lt_trans,
ExplicitBindings[dummy_loc,NamedHyp(id_of_string "m"), pmax]))
[compute_le_proofs le_proof;
tclTHENLIST[apply (Lazy.force lt_S_n); default_full_auto]];;
let rec list_cond_rewrite k def pmax cond_eqs le_proofs =
match cond_eqs with
[] -> tclIDTAC
| eq::eqs ->
tclTHENS
(general_rewrite_bindings false
(mkVar eq,
ExplicitBindings[dummy_loc, NamedHyp k_id, k;
dummy_loc, NamedHyp def_id, def]))
[list_cond_rewrite k def pmax eqs le_proofs;
make_lt_proof pmax le_proofs];;
let rec introduce_all_equalities func eqs values specs bound le_proofs
cond_eqs =
match specs with
[] ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let s_max = mkApp(Lazy.force coq_S, [|bound|]) in
let k = next_ident_away k_id ids in
let ids = k::ids in
let h' = next_ident_away (h'_id) ids in
let ids = h'::ids in
let def = next_ident_away def_id ids in
tclTHENLIST
[split (ImplicitBindings [s_max]);
intro_using k;
tclTHENS
(simplest_case (mkVar k))
[tclTHENLIST[intro_using h';
simplest_elim(mkApp(Lazy.force lt_n_O,[|s_max|]));
default_full_auto]; tclIDTAC];
clear [k];
intros_using [k;h';def];
simpl_iter();
unfold_in_concl[([1],evaluable_of_global_reference func)];
list_rewrite true eqs;
list_cond_rewrite (mkVar k) (mkVar def) bound cond_eqs le_proofs;
apply (Lazy.force refl_equal)] g
| spec1::specs ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let p = next_ident_away p_id ids in
let ids = p::ids in
let pmax = next_ident_away pmax_id ids in
let ids = pmax::ids in
let hle1 = next_ident_away hle_id ids in
let ids = hle1::ids in
let hle2 = next_ident_away hle_id ids in
let ids = hle2::ids in
let heq = next_ident_away heq_id ids in
tclTHENLIST
[simplest_elim (mkVar spec1);
list_rewrite true eqs;
intros_using [p; heq];
simplest_elim (mkApp(Lazy.force max_constr, [| bound; mkVar p|]));
intros_using [pmax; hle1; hle2];
introduce_all_equalities func eqs values specs
(mkVar pmax) ((mkVar pmax)::le_proofs)
(heq::cond_eqs)] g;;
let rec introduce_all_values func context_fn
eqs proofs hrec args values specs =
match args with
[] ->
tclTHENLIST
[split(ImplicitBindings
[context_fn (List.map mkVar (List.rev values))]);
introduce_all_equalities func eqs
(List.rev values) (List.rev specs) (Lazy.force coq_O) [] []]
| arg::args ->
(fun g ->
let ids = ids_of_named_context (pf_hyps g) in
let rec_res = next_ident_away rec_res_id ids in
let ids = rec_res::ids in
let hspec = next_ident_away hspec_id ids in
let tac = introduce_all_values func context_fn eqs proofs
hrec args
(rec_res::values)(hspec::specs) in
(tclTHENS
(simplest_elim (mkApp(mkVar hrec, [|arg|])))
[tclTHENLIST [intros_using [rec_res; hspec];
tac];
tclTHENLIST
[list_rewrite true eqs;
List.fold_right
(fun proof tac ->
tclORELSE
(tclCOMPLETE
(tclTHENLIST
[e_resolve_constr proof;
tclORELSE default_full_auto e_assumption]))
tac)
proofs
(fun g ->
(msgnl (str "complete proof failed for decreasing call");
msgnl (Printer.pr_goal (sig_it g)); tclFAIL 0 "" g))]]) g)
let rec_leaf hrec proofs (func:global_reference) eqs expr =
match find_call_occs (mkVar (get_f (constr_of_reference func))) expr with
| context_fn, args ->
introduce_all_values func context_fn eqs proofs hrec args [] []
let rec proveterminate (hrec:identifier) (proofs:constr list)
(f_constr:constr) (func:global_reference) (eqs:constr list) (expr:constr) =
try
(* let _ = msgnl (str "entering proveterminate") in *)
let v =
match (kind_of_term expr) with
Case (_, t, a, l) ->
(match find_call_occs f_constr a with
_,[] ->
tclTHENS (fun g ->
(* let _ = msgnl(str "entering mkCaseEq") in *)
let v = (mkCaseEq a) g in
(* let _ = msgnl (str "exiting mkCaseEq") in *)
v
)
(List.map (mk_intros_and_continue true
(proveterminate hrec proofs f_constr func)
eqs)
(Array.to_list l))
| _, _::_ -> (match find_call_occs f_constr expr with
_,[] -> base_leaf func eqs expr
| _, _:: _ ->
rec_leaf hrec proofs func eqs expr))
| _ -> (match find_call_occs f_constr expr with
_,[] ->
(try
base_leaf func eqs expr
with e -> (msgerrnl (str "failure in base case");raise e))
| _, _::_ ->
rec_leaf hrec proofs func eqs expr) in
(* let _ = msgnl(str "exiting proveterminate") in *)
v
with e -> msgerrnl(str "failure in proveterminate"); raise e;;
let hyp_terminates func =
let a_arrow_b = (arg_type (constr_of_reference func)) in
let (_,a,b) = destProd a_arrow_b in
let left=
mkApp (Lazy.force iter,
[|a_arrow_b ;(mkRel 3);
(constr_of_reference func); (mkRel 1); (mkRel 6)|]) in
let right= (mkRel 5) in
let equality = mkApp(Lazy.force eq, [|b; left; right|]) in
let result = (mkProd ((Name def_id) , a_arrow_b, equality)) in
let cond = mkApp(Lazy.force lt, [|(mkRel 2); (mkRel 1)|]) in
let nb_iter =
mkApp(Lazy.force ex,
[|Lazy.force nat;
(mkLambda
(Name
p_id,
Lazy.force nat,
(mkProd (Name k_id, Lazy.force nat,
mkArrow cond result))))|])in
let value = mkApp(Lazy.force coq_sig,
[|b;
(mkLambda (Name v_id, b, nb_iter))|]) in
mkProd ((Name x_id), a, value)
let start n_name input_type relation wf_thm =
(fun g ->
try
let ids = ids_of_named_context (pf_hyps g) in
let hrec = next_ident_away hrec_id (n_name::ids) in
let wf_c = mkApp(Lazy.force well_founded_induction,
[|input_type; relation; wf_thm|]) in
let x = next_ident_away x_id (hrec::n_name::ids) in
let v =
(fun g ->
let v =
tclTHENLIST
[intro_using x;
general_elim (mkVar x, ImplicitBindings[]) (wf_c, ImplicitBindings[]);
clear [x];
intros_using [n_name; hrec]] g in
v), hrec in
v
with e -> msgerrnl(str "error in start"); raise e);;
let rec instantiate_lambda t = function
| [] -> t
| a::l -> let (bound_name, _, body) = destLambda t in
(match bound_name with
Name id -> instantiate_lambda (subst1 a body) l
| Anonymous -> body) ;;
let whole_start func input_type relation wf_thm proofs =
(fun g ->
let v =
let ids = ids_of_named_context (pf_hyps g) in
let func_body = (def_of_const (constr_of_reference func)) in
let (f_name, _, body1) = destLambda func_body in
let f_id =
match f_name with
| Name f_id -> next_ident_away f_id ids
| Anonymous -> assert false in
let n_name, _, _ = destLambda body1 in
let n_id =
match n_name with
| Name n_id -> next_ident_away n_id (f_id::ids)
| Anonymous -> assert false in
let tac, hrec = (start n_id input_type relation wf_thm g) in
tclTHEN tac
(proveterminate hrec proofs (mkVar f_id) func []
(instantiate_lambda func_body [mkVar f_id;mkVar n_id])) g in
(* let _ = msgnl(str "exiting whole start") in *)
v);;
let com_terminate fonctional_ref input_type relation_ast wf_thm_ast
thm_name proofs =
let (evmap, env) = Command.get_current_context() in
let (relation:constr)= interp_constr evmap env relation_ast in
let (wf_thm:constr) = interp_constr evmap env wf_thm_ast in
let (proofs_constr:constr list) =
List.map (fun x -> interp_constr evmap env x) proofs in
(start_proof thm_name
(IsGlobal (Proof Lemma)) (Environ.named_context env) (hyp_terminates fonctional_ref)
(fun _ _ -> ());
by (whole_start fonctional_ref
input_type relation wf_thm proofs_constr);
Command.save_named true);;
let ind_of_ref = function
| IndRef (ind,i) -> (ind,i)
| _ -> anomaly "IndRef expected"
let (value_f:constr -> global_reference -> constr) =
fun a fterm ->
let d0 = dummy_loc in
let x_id = x_id in
let v_id = v_id in
let value =
RLambda
(d0, Name x_id, RDynamic(d0, constr_in a),
RCases
(d0,(None,ref None),
[RApp(d0, RRef(d0,fterm), [RVar(d0, x_id)]),ref (Anonymous,None)],
[d0, [v_id], [PatCstr(d0,(ind_of_ref
(Lazy.force coq_sig_ref),1),
[PatVar(d0, Name v_id);
PatVar(d0, Anonymous)],
Anonymous)],
RVar(d0,v_id)])) in
understand Evd.empty (Global.env()) value;;
let (declare_fun : identifier -> global_kind -> constr -> global_reference) =
fun f_id kind value ->
let ce = {const_entry_body = value;
const_entry_type = None;
const_entry_opaque = false;
const_entry_boxed = true} in
ConstRef(declare_constant f_id (DefinitionEntry ce, kind));;
let (declare_f : identifier -> global_kind -> constr -> global_reference -> global_reference) =
fun f_id kind input_type fterm_ref ->
declare_fun f_id kind (value_f input_type fterm_ref);;
let start_equation (f:global_reference) (term_f:global_reference)
(cont_tactic:identifier -> tactic) g =
let ids = ids_of_named_context (pf_hyps g) in
let x = next_ident_away x_id ids in
tclTHENLIST [
intro_using x;
unfold_constr f;
simplest_case (mkApp (constr_of_reference term_f, [| mkVar x|]));
cont_tactic x] g;;
let base_leaf_eq func eqs f_id g =
let ids = ids_of_named_context (pf_hyps g) in
let k = next_ident_away k_id ids in
let p = next_ident_away p_id (k::ids) in
let v = next_ident_away v_id (p::k::ids) in
let heq = next_ident_away heq_id (v::p::k::ids) in
let heq1 = next_ident_away heq_id (heq::v::p::k::ids) in
let hex = next_ident_away hex_id (heq1::heq::v::p::k::ids) in
tclTHENLIST [
intros_using [v; hex];
simplest_elim (mkVar hex);
intros_using [p;heq1];
tclTRY
(rewriteRL
(mkApp(mkVar heq1,
[|mkApp (Lazy.force coq_S, [|mkVar p|]);
mkApp(Lazy.force lt_n_Sn, [|mkVar p|]); f_id|])));
simpl_iter();
unfold_in_concl [([1], evaluable_of_global_reference func)];
list_rewrite true eqs;
apply (Lazy.force refl_equal)] g;;
let f_S t = mkApp(Lazy.force coq_S, [|t|]);;
let rec introduce_all_values_eq cont_tac functional termine f p heq1 pmax
bounds le_proofs eqs ids =
function
[] ->
tclTHENLIST
[tclTHENS
(general_rewrite_bindings false
(mkVar heq1,
ExplicitBindings[dummy_loc,NamedHyp k_id,
f_S(f_S(mkVar pmax));
dummy_loc,NamedHyp def_id,
f]))
[tclTHENLIST
[simpl_iter();
unfold_constr (reference_of_constr functional);
list_rewrite true eqs; cont_tac pmax le_proofs];
tclTHENLIST[apply (Lazy.force le_lt_SS);
compute_le_proofs le_proofs]]]
| arg::args ->
let v' = next_ident_away v_id ids in
let ids = v'::ids in
let hex' = next_ident_away hex_id ids in
let ids = hex'::ids in
let p' = next_ident_away p_id ids in
let ids = p'::ids in
let new_pmax = next_ident_away pmax_id ids in
let ids = pmax::ids in
let hle1 = next_ident_away hle_id ids in
let ids = hle1::ids in
let hle2 = next_ident_away hle_id ids in
let ids = hle2::ids in
let heq = next_ident_away heq_id ids in
let ids = heq::ids in
let heq2 =
next_ident_away heq_id ids in
let ids = heq2::ids in
tclTHENLIST
[mkCaseEq(mkApp(termine, [| arg |]));
intros_using [v'; hex'];
simplest_elim(mkVar hex');
intros_using [p'];
simplest_elim(mkApp(Lazy.force max_constr, [|mkVar pmax;
mkVar p'|]));
intros_using [new_pmax;hle1;hle2];
introduce_all_values_eq
(fun pmax' le_proofs'->
tclTHENLIST
[cont_tac pmax' le_proofs';
intros_using [heq;heq2];
rewriteLR (mkVar heq2);
tclTHENS
(general_rewrite_bindings false
(mkVar heq,
ExplicitBindings
[dummy_loc, NamedHyp k_id,
f_S(mkVar pmax');
dummy_loc, NamedHyp def_id, f]))
[tclIDTAC;
tclTHENLIST
[apply (Lazy.force le_lt_n_Sm);
compute_le_proofs le_proofs']]])
functional termine f p heq1 new_pmax
(p'::bounds)((mkVar pmax)::le_proofs) eqs
(heq2::heq::hle2::hle1::new_pmax::p'::hex'::v'::ids) args]
let rec_leaf_eq termine f ids functional eqs expr fn args =
let p = next_ident_away p_id ids in
let ids = p::ids in
let v = next_ident_away v_id ids in
let ids = v::ids in
let hex = next_ident_away hex_id ids in
let ids = hex::ids in
let heq1 = next_ident_away heq_id ids in
let ids = heq1::ids in
let hle1 = next_ident_away hle_id ids in
let ids = hle1::ids in
tclTHENLIST
[intros_using [v;hex];
simplest_elim (mkVar hex);
intros_using [p;heq1];
generalize [mkApp(Lazy.force le_n,[|mkVar p|])];
intros_using [hle1];
introduce_all_values_eq (fun _ _ -> tclIDTAC)
functional termine f p heq1 p [] [] eqs ids args;
apply (Lazy.force refl_equal)]
let rec prove_eq (termine:constr) (f:constr)(functional:global_reference)
(eqs:constr list)
(expr:constr) =
match kind_of_term expr with
Case(_,t,a,l) ->
(match find_call_occs f a with
_,[] ->
tclTHENS(mkCaseEq a)(* (simplest_case a) *)
(List.map
(mk_intros_and_continue true
(prove_eq termine f functional) eqs)
(Array.to_list l))
| _,_::_ ->
(match find_call_occs f expr with
_,[] -> base_leaf_eq functional eqs f
| fn,args ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
rec_leaf_eq termine f ids (constr_of_reference functional)
eqs expr fn args g))
| _ ->
(match find_call_occs f expr with
_,[] -> base_leaf_eq functional eqs f
| fn,args ->
fun g ->
let ids = ids_of_named_context (pf_hyps g) in
rec_leaf_eq termine f ids (constr_of_reference functional)
eqs expr fn args g);;
let (com_eqn : identifier ->
global_reference -> global_reference -> global_reference
-> constr_expr -> unit) =
fun eq_name functional_ref f_ref terminate_ref eq ->
let (evmap, env) = Command.get_current_context() in
let eq_constr = interp_constr evmap env eq in
let f_constr = (constr_of_reference f_ref) in
(start_proof eq_name (IsGlobal (Proof Lemma))
(Environ.named_context env) eq_constr (fun _ _ -> ());
by
(start_equation f_ref terminate_ref
(fun x ->
prove_eq (constr_of_reference terminate_ref)
f_constr functional_ref []
(instantiate_lambda
(def_of_const (constr_of_reference functional_ref))
[f_constr; mkVar x])));
Command.save_named true);;
let recursive_definition f type_of_f r wf proofs eq =
let function_type = interp_constr Evd.empty (Global.env()) type_of_f in
let env = push_rel (Name f,None,function_type) (Global.env()) in
let res = match kind_of_term (interp_constr Evd.empty env eq) with
Prod(Name name_of_var,type_of_var,e) ->
(match kind_of_term e with
App(e,[|type_e;gche;b|]) ->
mkLambda(Name f,function_type,
mkLambda(Name name_of_var,type_of_var,b))
|_ -> failwith "Recursive Definition")
|_ -> failwith "Recursive Definition" in
let (_, input_type, _) = destProd function_type in
let equation_id = add_suffix f "_equation" in
let functional_id = add_suffix f "_F" in
let term_id = add_suffix f "_terminate" in
let functional_ref = declare_fun functional_id IsDefinition res in
let _ = com_terminate functional_ref input_type r wf term_id proofs in
let term_ref = Nametab.locate (make_short_qualid term_id) in
let f_ref = declare_f f (IsProof Lemma) input_type term_ref in
(* let _ = message "start second proof" in *)
com_eqn equation_id functional_ref f_ref term_ref eq;;
VERNAC COMMAND EXTEND RecursiveDefinition
[ "Recursive" "Definition" ident(f) constr(type_of_f) constr(r) constr(wf)
constr(proof) constr(eq) ] ->
[ recursive_definition f type_of_f r wf [proof] eq ]
| [ "Recursive" "Definition" ident(f) constr(type_of_f) constr(r) constr(wf)
"[" ne_constr_list(proof) "]" constr(eq) ] ->
[ recursive_definition f type_of_f r wf proof eq ]
END
|