aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/interface/xlate.ml
blob: 7142f1e6d1cafd114ebba87904a4eacfbb7bb081 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

(** Translation from coq abstract syntax trees to centaur vernac
   *)
open String;;
open Char;;
open Util;;
open Ast;;
open Names;;
open Ctast;;
open Ascent;;
open Genarg;;
open Rawterm;;
open Tacexpr;;
open Vernacexpr;;

let in_coq_ref = ref false;;

let xlate_mut_stuff = ref ((fun _ -> 
          Nvar((0,0), "function xlate_mut_stuff should not be used here")):
              Ctast.t -> Ctast.t);;

let set_xlate_mut_stuff v = xlate_mut_stuff := v;;

let declare_in_coq () = in_coq_ref:=true;;

let in_coq () = !in_coq_ref;;

(* // Verify whether this is dead code, as of coq version 7 *)
(* The following three sentences have been added to cope with a change 
of strategy from the Coq team in the way rules construct ast's.  The
problem is that now grammar rules will refer to identifiers by giving
their absolute name, using the mutconstruct when needed.  Unfortunately,
when you have a mutconstruct structure, you don't have a way to guess
the corresponding identifier without an environment, and the parser
does not have an environment.  We add one, only for the constructs
that are always loaded. *)
let type_table = ((Hashtbl.create 17) :
      (string, ((string array) array)) Hashtbl.t);;

Hashtbl.add type_table "Coq.Init.Logic.and"
  [|[|"dummy";"conj"|]|];;

Hashtbl.add type_table "Coq.Init.Datatypes.prod"
  [|[|"dummy";"pair"|]|];;

Hashtbl.add type_table "Coq.Init.Datatypes.nat"
  [|[|"";"O"; "S"|]|];;

Hashtbl.add type_table "Coq.ZArith.fast_integer.Z"
[|[|"";"ZERO";"POS";"NEG"|]|];;


Hashtbl.add type_table "Coq.ZArith.fast_integer.positive"
[|[|"";"xI";"xO";"xH"|]|];;

(*The following two codes are added to cope with the distinction
  between ocaml and caml-light syntax while using ctcaml to
  manipulate the program *)
let code_plus = code (get "+" 0);;

let code_minus = code (get "-" 0);;

let coercion_description_holder = ref (function _ -> None : t -> int option);;

let coercion_description t = !coercion_description_holder t;;

let set_coercion_description f =
 coercion_description_holder:=f; ();;

let string_of_node_loc the_node =
  match loc the_node with
      (a,b) -> "(" ^ (string_of_int a) ^ ", " ^ (string_of_int b) ^ ")";;

let xlate_error s = failwith ("Translation error: " ^ s);;

type astrecurse =   Rbinder of ct_ID_OPT * astrecurse
                  | Rform of ct_FORMULA
                  | Rform_list of ct_FORMULA list;;

let ctf_STRING_OPT_NONE = CT_coerce_NONE_to_STRING_OPT CT_none;;

let ctf_STRING_OPT_SOME s = CT_coerce_STRING_to_STRING_OPT s;;

let ctf_STRING_OPT = function
  | None -> ctf_STRING_OPT_NONE
  | Some s -> ctf_STRING_OPT_SOME s

let ctv_ID_OPT_NONE = CT_coerce_NONE_to_ID_OPT CT_none;;

let ctf_ID_OPT_SOME s = CT_coerce_ID_to_ID_OPT s;;

let ctv_ID_OPT_OR_ALL_NONE =
 CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_NONE_to_ID_OPT CT_none);;

let ctv_FORMULA_OPT_NONE =
  CT_coerce_ID_OPT_to_FORMULA_OPT(CT_coerce_NONE_to_ID_OPT CT_none);;

let ctf_ID_OPT_OR_ALL_SOME s =
 CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (ctf_ID_OPT_SOME s);;

let ctv_ID_OPT_OR_ALL_ALL = CT_all;;

let ctv_SPEC_OPT_NONE = CT_coerce_NONE_to_SPEC_OPT CT_none;;

let ct_coerce_FORMULA_to_DEF_BODY x =
    CT_coerce_CONTEXT_PATTERN_to_DEF_BODY
    (CT_coerce_FORMULA_to_CONTEXT_PATTERN x);;

let castc x = CT_coerce_TYPED_FORMULA_to_FORMULA x;;

let varc x = CT_coerce_ID_to_FORMULA x;;

let xlate_ident id = CT_ident (string_of_id id)

let ident_tac s = CT_user_tac (xlate_ident s, CT_targ_list []);;

let ident_vernac s = CT_user_vernac (CT_ident s, CT_varg_list []);;

type iTARG =   Targ_command of ct_FORMULA
             | Targ_intropatt of ct_INTRO_PATT_LIST
             | Targ_id_list of ct_ID_LIST
             | Targ_spec_list of ct_SPEC_LIST
             | Targ_binding_com of ct_FORMULA
             | Targ_ident of ct_ID
             | Targ_int of ct_INT
             | Targ_binding of ct_BINDING
             | Targ_pattern of ct_PATTERN
             | Targ_unfold of ct_UNFOLD
	     | Targ_unfold_ne_list of ct_UNFOLD_NE_LIST
             | Targ_string of ct_STRING
             | Targ_fixtac of ct_FIXTAC
             | Targ_cofixtac of ct_COFIXTAC
             | Targ_tacexp of ct_TACTIC_COM
             | Targ_redexp of ct_RED_COM;;

type iVARG =   Varg_binder of ct_BINDER
             | Varg_binderlist of ct_BINDER_LIST
             | Varg_bindernelist of ct_BINDER_NE_LIST
             | Varg_call of ct_ID * iVARG list
             | Varg_constr of ct_FORMULA
             | Varg_sorttype of ct_SORT_TYPE
             | Varg_constrlist of ct_FORMULA list
             | Varg_ident of ct_ID
             | Varg_int of ct_INT
             | Varg_intlist of ct_INT_LIST
             | Varg_none
             | Varg_string of ct_STRING
             | Varg_tactic of ct_TACTIC_COM
             | Varg_ast of ct_AST
             | Varg_astlist of ct_AST_LIST
             | Varg_tactic_arg of iTARG
             | Varg_varglist of iVARG list;;


let coerce_iVARG_to_FORMULA =
 function
    | Varg_constr x -> x
    | Varg_sorttype x -> CT_coerce_SORT_TYPE_to_FORMULA x
    | Varg_ident id -> CT_coerce_ID_to_FORMULA id
    | _ -> xlate_error "coerce_iVARG_to_FORMULA: unexpected argument";;

let coerce_iVARG_to_ID =
 function Varg_ident id -> id
    | _ -> xlate_error "coerce_iVARG_to_ID";;

let coerce_VARG_to_ID =
 function
    | CT_coerce_ID_OPT_OR_ALL_to_VARG (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_ID_to_ID_OPT x)) ->
     x
    | _ -> xlate_error "coerce_VARG_to_ID";;

let xlate_id =
 function
    | Nvar (_, id) ->
     (match id with
     | "_" -> xlate_error "xlate_id: '_' is ident option"
     | s -> CT_ident s)
    | Id (_, id) ->
     (match id with
     | "_" -> xlate_error "xlate_id: '_' is ident option"
     | s -> CT_ident s)
    | _ -> xlate_error "xlate_id: not an identifier";;

let xlate_id_unit = function
    None -> CT_unit
  | Some x -> CT_coerce_ID_to_ID_UNIT (xlate_ident x);;

let xlate_id_opt =
 function
    | Nvar (_, id) ->
     (match id with
     | "_" -> ctv_ID_OPT_NONE
     | s -> ctf_ID_OPT_SOME (CT_ident s))
    | _ -> xlate_error "xlate_id: not an identifier";;

let xlate_ident_opt =
  function
    | None -> ctv_ID_OPT_NONE
    | Some id -> ctf_ID_OPT_SOME (xlate_ident id)

let xlate_int =
 function
    | Num (_, n) -> CT_int n
    | _ -> xlate_error "xlate_int: not an int";;

let xlate_id_to_id_or_int_opt s =
   CT_coerce_ID_OPT_to_ID_OR_INT_OPT
     (CT_coerce_ID_to_ID_OPT (CT_ident (string_of_id s)));;

let xlate_int_to_id_or_int_opt n =
   CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT
     (CT_coerce_INT_to_ID_OR_INT (CT_int n));;

let none_in_id_or_int_opt =
  CT_coerce_ID_OPT_to_ID_OR_INT_OPT
    (CT_coerce_NONE_to_ID_OPT(CT_none));;

let xlate_int_opt = function
  | Some n -> CT_coerce_INT_to_INT_OPT (CT_int n)
  | None ->  CT_coerce_NONE_to_INT_OPT CT_none

let xlate_string =
 function
    | Str (_, s) -> CT_string s
    | _ -> xlate_error "xlate_string: not a string";;

(** Formulae
   *)
let strip_Rform =
 function
    | Rform body -> body
    | _ -> xlate_error "strip_Rform: binder expression as formula";;

let rec flatten_one_level = function
  [Node(_, _, l)] -> l
| Node(_, _, l)::tl -> List.append l (flatten_one_level tl)
| _ -> assert false;;

let make_lambdac dom boundcod =
 let rec gather =
  function
     | Rbinder (x, body) ->
      let l, body' = gather body in
      x::l, body'
     | Rform body -> [], body
     | _ -> xlate_error "make_lambdac : not Rbinder or Rform" in
 let varlist, cod = gather boundcod in
 match varlist with
  | [] -> xlate_error "make_lamdac: empty binder list"
  | id :: l -> CT_lambdac (CT_binder (CT_id_opt_ne_list (id, l), dom), cod);;

let rec make_prodc dom =
 let rec gather =
  function
     | Rbinder (id_opt, body) ->
      let l, body' = gather body in
      id_opt::l, body'
     | Rform body -> [], body
     | _ -> xlate_error "gather for make_prodc : not Rbinder or Rform" in
 function
     | Rform body -> xlate_error "make_prodc: empty binder list in make_binder"
     | boundrange ->
      let varlist, range = gather boundrange in
      (match varlist with
       | [] -> range
       | id :: l -> CT_prodc (CT_binder (CT_id_opt_ne_list (id, l), dom), range));;

let make_appln =
 function
    | [] -> xlate_error "make_appln: empty application list"
    | (Rform m) :: [] -> m
    | (Rform m) :: ((Rform n) :: l) ->
     CT_appc (m, CT_formula_ne_list (n, List.map strip_Rform l))
    | _ -> xlate_error "make_appln: binder expression in application";;

let make_casec casety =
 function
    | [] -> xlate_error "bad case expression"
    | x :: [] -> xlate_error "bad case expression"
    | (Rform a) :: ((Rform m) :: l) ->
     CT_elimc (CT_case casety, a, m, CT_formula_list (List.map strip_Rform l))
    | _ -> xlate_error "make_casec: binder expression as formula";;

let qualid_to_ct_ID =
  function
      Nvar(_, s) -> Some(CT_ident s)
    | Node(_, ("QUALID"|"QUALIDARG"|"QUALIDCONSTARG"), l) ->
	(* // to be modified when qualified identifiers are introducted. *)
	let rec f = 
	  function
	      [] -> xlate_error "empty list in qualified identifier"
	    | [Nvar(_,a)] -> a
	    | (Nvar(_,s))::l ->  s ^ "." ^ (f l)
	    | _ -> assert false in
	  Some(CT_ident (f l))
    | Node(_, "QUALIDMETA",[Num(_,n)]) -> Some(CT_metac (CT_int n))
    | _ -> None;;

let tac_qualid_to_ct_ID qid = CT_ident (Libnames.string_of_qualid qid)

let loc_qualid_to_ct_ID (_,qid) = CT_ident (Libnames.string_of_qualid qid)

let qualid_or_meta_to_ct_ID = function
  | AN (_,qid) -> tac_qualid_to_ct_ID qid
  | MetaNum (_,n) -> CT_metac (CT_int n)

let ident_or_meta_to_ct_ID = function
  | AN (_,id) -> xlate_ident id
  | MetaNum (_,n) -> CT_metac (CT_int n)

let xlate_qualid_list l = CT_id_list (List.map loc_qualid_to_ct_ID l)

let reference_to_ct_ID = function
  | Coqast.RIdent (_,id) -> CT_ident (Names.string_of_id id)
  | Coqast.RQualid (_,qid) -> CT_ident (Libnames.string_of_qualid qid)

let xlate_class = function
  | FunClass -> CT_ident "FUNCLASS"
  | SortClass -> CT_ident "SORTCLASS"
  | RefClass qid -> loc_qualid_to_ct_ID qid

let special_case_qualid cont_function astnode =
  match qualid_to_ct_ID astnode with
      Some(id) -> Some(Rform(CT_coerce_ID_to_FORMULA id))
    | None -> None;;

let xlate_op the_node opn a b =
 match opn with
 | "META" ->
  (match a, b with
  | ((Num (_, n)) :: []), [] -> CT_coerce_ID_to_FORMULA(CT_metac (CT_int n))
  | _, _ -> xlate_error "xlate_op : META ")
 | "ISEVAR" -> CT_existvarc
 | "FORCEIF" ->
   (match a,b with
     | [], l ->
      make_casec "Case" l
     | _,_ -> xlate_error "xlate_op : FORCEIF")	
 | "PROP" ->
  (match a, b with
  | [], [] ->
   CT_coerce_SORT_TYPE_to_FORMULA (CT_sortc "Prop")
  | _, _ -> xlate_error "xlate_op : PROP ")
 | "SET" ->
  (match a, b with
  | [], [] ->
   CT_coerce_SORT_TYPE_to_FORMULA (CT_sortc "Set")
  | _, _ -> xlate_error "xlate_op : PROP ")
 | (*The number of elements in the argument list is left unspecified: this list
     varies when the object is type-checked <Yves Bertot 21/3/95> *)
   "TYPE" ->
  (match a, b with
  | _, _ -> CT_coerce_SORT_TYPE_to_FORMULA (CT_sortc "Type"))
 | "CAST" ->
  (match a, b with
  | [], ((Rform c1) :: ((Rform c2) :: [])) -> castc (CT_typed_formula (c1, c2))
  | _, _ -> xlate_error "xlate_op : CAST ")
 | "PROD" ->
  (match a, b with
  | [],
      ((Rform c1) ::
        ((Rbinder ((CT_coerce_NONE_to_ID_OPT CT_none), (Rform c2))) :: [])) ->
   CT_arrowc (c1, c2)
  | [],
      ((Rform c1) :: ((Rbinder ((CT_coerce_ID_to_ID_OPT id), (Rform c2))) :: [])) ->
   CT_prodc
    (CT_binder (CT_id_opt_ne_list (CT_coerce_ID_to_ID_OPT id, []), c1), c2)
  | _, _ -> xlate_error "xlate_op : PROD")
 | "LAMBDA" ->
  (match a, b with
  | [], [Rform c1;Rbinder (b, (Rform c2))] ->
   CT_lambdac (CT_binder (CT_id_opt_ne_list (b, []), c1), c2)
  | _, _ -> xlate_error "xlate_op : LAMBDA")
 | "PRODLIST" ->
  (match a, b with
  | [], ((Rform c1) :: (c2 :: [])) -> make_prodc c1 c2
  | _, _ -> xlate_error "xlate_op : PRODLIST")
 | "LAMBDALIST" ->
  (match a, b with
  | [], ((Rform c1) :: (c2 :: [])) -> make_lambdac c1 c2
  | _, _ -> xlate_error "xlate_op : LAMBDALIST")
 | "APPLIST" ->
  (match a, b with
  | [], tl -> make_appln tl
  | _, _ -> xlate_error "xlate_op : APPLIST")
 | (** string_of_path needs to be investigated.
      *)
   "CONST" ->
  (match a, b with
  | ((Path (_, sl)) :: []), [] ->
    CT_coerce_ID_to_FORMULA(CT_ident
       (Names.string_of_label (Names.label (section_path sl))))
  | ((Path (_, sl)) :: []), tl ->
 CT_coerce_ID_to_FORMULA(CT_ident   
       (Names.string_of_label(Names.label (section_path sl))))
  | _, _ -> xlate_error "xlate_op : CONST")
 | (** string_of_path needs to be investigated.
    *)
 "MUTIND" ->
     (match a, b with
  	| [Path(_, sl); Num(_, tyi)], [] ->
	    if !in_coq_ref then
	      match special_case_qualid ()
		(!xlate_mut_stuff (Node((0,0),"MUTIND", a))) with
		    Some (Rform x) -> x
		  | _ -> assert false
	    else
	    CT_coerce_ID_to_FORMULA(
	      CT_ident(Names.string_of_label
			 (Names.label (section_path sl))))
  	| _, _ -> xlate_error "xlate_op : MUTIND")
 | "CASE"
 | "MATCH" ->
     (let compute_flag s = 
       	match s with "CASE" -> "Case" | "MATCH" -> "Match" | _ -> assert false in
	match a, b with
          | [], tl -> make_casec (compute_flag opn) tl
      	  | [Str(_, "SYNTH")], tl ->
              make_casec (compute_flag opn) (Rform CT_existvarc::tl)
	| _, _ -> assert false)
 | (** string_of_path needs to be investigated.
      *)
   "MUTCONSTRUCT" ->
  (match a, b with
	  | [Path(_, sl);Num(_, tyi);Num(_, n)], cl ->
   if !in_coq_ref then
     match
       special_case_qualid ()
	 (!xlate_mut_stuff (Node((0,0),"MUTCONSTRUCT",a))) with
	 | Some(Rform x) -> x
	 | _ -> assert false
   else
   let name = 
     let dir,id = Libnames.decode_kn (section_path sl) in
       Names.string_of_dirpath (Libnames.extend_dirpath dir id) 
   in
     (* This is rather a patch to cope with the fact that identifier
        names have disappeared from the vo files for grammar rules *)
       let type_desc = (try Some (Hashtbl.find type_table name) with
                          Not_found -> None) in
        (match type_desc with
           None -> 
	     xlate_error
	       ("MUTCONSTRUCT:" ^ 
                " can't describe a constructor without its name " ^
		name ^ "(" ^ (string_of_int tyi) ^ "," ^
	       (string_of_int n) ^ ")")
         | Some type_desc' -> 
              let type_desc'' = type_desc'.(tyi) in
              let ident = type_desc''.(n) in
              CT_coerce_ID_to_FORMULA(CT_ident ident))
  | _, _ -> xlate_error "xlate_op : MUTCONSTRUCT")
 |"EXPL" ->(match a, b with
  | [(Num (_, i))], ((Rform t)::[]) -> 
             CT_bang (CT_coerce_INT_to_INT_OPT (CT_int i), t)
  | _, _ -> xlate_error "xlate_op : EXPL ")
    
 | opn  -> xlate_error ("xlate_op : " ^ opn ^ " doesn't exist (" ^
			    (string_of_node_loc the_node) ^ ")");;

let split_params =
 let rec sprec acc =
  function
     | (Id _ as p) :: l -> sprec (p::acc) l
     | (Str _ as p) :: l -> sprec (p::acc) l
     | (Num _ as p) :: l -> sprec (p::acc) l
     | (Path _ as p) :: l -> sprec (p::acc) l
     | l -> List.rev acc, l in
 sprec [];;

let id_to_pattern_var ctid =
 match ctid with
 | CT_ident "_" -> 
     CT_coerce_ID_OPT_to_MATCH_PATTERN (CT_coerce_NONE_to_ID_OPT CT_none)
 | CT_ident id_string ->
     CT_coerce_ID_OPT_to_MATCH_PATTERN 
       (CT_coerce_ID_to_ID_OPT (CT_ident id_string))
 | _ -> assert false;;

let rec xlate_cases_pattern cont_function =
 function
   | Nvar(_, s) -> id_to_pattern_var (CT_ident s)
    | Node (_, "QUALID", l) as it ->
	(match qualid_to_ct_ID it with
	     Some x -> id_to_pattern_var x
	   | None -> assert false)
    | Node (_, "PATTCONSTRUCT", (f1 :: (arg1 :: args))) ->
     CT_pattern_app
      (xlate_cases_pattern cont_function f1,
      CT_match_pattern_ne_list
       (xlate_cases_pattern cont_function arg1, 
	List.map (xlate_cases_pattern cont_function) args))
    | Node (_, "PATTAS", [Nvar (_, id); pattern]) ->
     CT_pattern_as
      (xlate_cases_pattern
	 cont_function pattern, CT_coerce_ID_to_ID_OPT (CT_ident id))
    | Node (_, "PATTCONSTRUCT", [f]) ->	xlate_cases_pattern cont_function f
    | Node (_, ("MUTCONSTRUCT" as s), args) as it -> 
	let pl, tl = split_params args in
        (match xlate_op it s pl (List.map cont_function tl) with
	   | CT_coerce_ID_to_FORMULA id -> id_to_pattern_var id
	   | _ -> assert false)
    | Node(_, s, _) -> xlate_error ("error for a pattern " ^ s)
    | Path(_,sl) -> 
        id_to_pattern_var (CT_ident (List.fold_right
				       (fun a b ->
					  if b = "" then
					    a
					  else
					    a ^ "." ^ b) sl ""))
    | _ -> xlate_error "Unexpected data while translating a pattern";;

(*This function recognizes and translates let constructs
  // I think this code should be adapted to build a real let construct *)
let special_case_let_construct cont_function =
 function
    | Node (_, "LETIN", [val_arg;Slam(_, (Some b), body)]) ->
     Some
      (Rform
      (CT_letin(CT_ident b, strip_Rform (cont_function val_arg),
		strip_Rform (cont_function body))))
    | _ -> None;;

let cvt_binder cont_function =
 function 
    | Node (_,"BINDER", (c :: idl)) ->
        (match idl with
           | [] -> xlate_error "cvt_binder empty identifier list"
           | id :: l -> 
               CT_binder
                 (CT_id_opt_ne_list (xlate_id_opt id,
                              List.map xlate_id_opt l),
                        cont_function c))
    | _ -> failwith "cvt_binder";;

let cvt_binders cont_function =
  function
     | Node(_,name, args) when name = "BINDERLIST" or name = "BINDERS" ->
        CT_binder_list(List.map (cvt_binder cont_function) args)
     | _ -> failwith "cvt_binders";;


(*This function recognizes and translates the Fix construct *)
let special_case_fix cont_function =
 function
    | Node (_, "FIX", ((Nvar (_, iddef)) :: (l :: ldecl))) ->
     let xlate_fixbinder =
      function
         | Node (_, "NUMFDECL",
                   ((Nvar (_, fi)) ::
                     ((Num (_, ni)) :: (v_Type :: (v_Value :: []))))) ->
          let v_Type' = strip_Rform (cont_function v_Type) in
          let v_Value' = strip_Rform (cont_function v_Value) in
          CT_fix_binder (CT_ident fi, CT_int ni, v_Type', v_Value')
         | Node (_, "FDECL",
                   ((Nvar (_, fi)) ::
                     (binder :: (v_Type :: (v_Value :: []))))) ->
          let v_Type' = strip_Rform (cont_function v_Type) in
          let v_Value' = strip_Rform (cont_function v_Value) in
          (match cvt_binders (compose strip_Rform cont_function) binder with
            | CT_binder_list(a::tl) -> 
                   CT_coerce_FIX_REC_to_FIX_BINDER
                     (CT_fix_rec (CT_ident fi, CT_binder_ne_list(a,tl),
                              v_Type', v_Value'))
            | _ -> xlate_error ("special_case_fix : " ^
				"empty list of binders"))
         | _ ->
          xlate_error
           ("special_case_fix : " ^ "FIX, unexpected form in xlate_fixbinder")
     in
     Some
      (Rform
      (CT_fixc
      (CT_ident iddef,
      CT_fix_binder_list (xlate_fixbinder l, List.map xlate_fixbinder ldecl))))
    | _ -> None;;

(*This function recognizes and translates cofix constructs *)
let special_case_cofix cont_function =
 function
    | Node (_, "COFIX", ((Nvar (_, iddef)) :: (l :: ldecl))) ->
     let xlate_cofixbinder =
      function
         | Node (_, "CFDECL", ((Nvar (_, fi)) :: (v_Type :: (v_Value :: [])))) ->
          let v_Type' = strip_Rform (cont_function v_Type) in
          let v_Value' = strip_Rform (cont_function v_Value) in
          CT_cofix_rec (CT_ident fi, v_Type', v_Value')
         | _ ->
          xlate_error
           ("special_case_cofix : " ^
             "COFIX, unexpected form in xlate_fixbinder") in
     Some
      (Rform
      (CT_cofixc
      (CT_ident iddef,
      CT_cofix_rec_list (xlate_cofixbinder l, List.map xlate_cofixbinder ldecl))))
    | _ -> None;;



let rec list_last = function
  | [a] -> a
  | a::l -> list_last l
  | [] -> failwith "list_last called on an empty list";;

let rec slam_body = function
  | Slam(_, _, b) -> slam_body b
  | c -> c;;

let translate_one_equation cont_function = function
  | Node (_, "EQN", body::first_pattern::patterns) ->
      let translated_patterns = List.map 
				  (xlate_cases_pattern cont_function)
				  patterns in
	CT_eqn
	  (CT_match_pattern_ne_list
	     (xlate_cases_pattern
		cont_function first_pattern, translated_patterns),
	     strip_Rform (cont_function body))
       | _ ->
           xlate_error "Unexpected equation shape while translating a Cases"

(*this function recognizes and translates Cases constructs *)
let special_case_cases cont_function =
 function
   | Node(_, s,
	  type_returned::matched_arg::equations) when
       (s = "CASES") or (s = "FORCELET") or (s = "FORCEIF") ->
       let simple_type_returned =
	 match type_returned with
	   | (Str (_, "SYNTH")) -> ctv_FORMULA_OPT_NONE
	   | _ ->
	       CT_coerce_FORMULA_to_FORMULA_OPT
		 (strip_Rform (cont_function type_returned)) in
     let extract_equation = (function
       | Node(_, "EQN", l) as it -> it
       | _ -> xlate_error "equation is not an EQN") in
     let translated_equations =
       List.map 
         (fun x -> translate_one_equation cont_function (extract_equation x))
				  equations in
     let first_value, translated_matched_values =
      match matched_arg with
      | Node (_, "TOMATCH", matched_values) ->
       (match
        List.map (function x -> strip_Rform (cont_function x)) matched_values
        with
       | a :: b -> a, b
       | _ -> xlate_error "Empty list of match values while translating a Cases")
      | one_matched_value -> strip_Rform (cont_function one_matched_value), []
     in
     Some
      (Rform
      (CT_cases
      (simple_type_returned,
      CT_formula_ne_list (first_value, translated_matched_values),
      CT_eqn_list translated_equations)))
    | _ -> None;;

(*These functions are auxiliary to the function that translate annotated
  formulas for the natural language presentation of proofs *)
let xlate_ID =
 function
    | Node (_, "ident", ((Str (_, str)) :: [])) -> CT_ident str
    | Node (_, str, l) ->
     xlate_error ("xlate_ID:" ^ str ^ ":" ^ string_of_int (List.length l))
    | _ -> xlate_error "xlate_ID";;

let xlate_STRING =
 function
    | Str (_, str) -> CT_string str
    | Node (_, str, l) ->
     xlate_error ("xlate_STRING:" ^ str ^ ":" ^ string_of_int (List.length l))
    | _ -> xlate_error "xlate_STRING";;

let rec strip_bang cont_function =
 function
    | [] -> [], false
    | a :: tl ->
     (match a with
     | Node (_, "XTRA", ((Str (_, "!")) :: ((Num (_, n)) :: (f :: [])))) ->
      if in_coq () then
	strip_bang cont_function tl
      else 
	begin
          let l, b = strip_bang cont_function tl in
            strip_Rform (cont_function f)::l, b
      	end
     | Node (_, "EXPL", [Num(_, n); f]) ->
      let l, _ = strip_bang cont_function tl in
      strip_Rform (cont_function f)::l, true
     | _ ->
      let l, b = strip_bang cont_function tl in
      strip_Rform (cont_function a)::l, b);;

let special_case_bang cont_function =
 function
    | Node (_, "APPLISTEXPL", f::tl) ->
     let l, b = strip_bang cont_function tl in
     let compiled_f = strip_Rform (cont_function f) in
     let
     real_function =
      if in_coq () then
      (if b then CT_bang (CT_coerce_NONE_to_INT_OPT CT_none, compiled_f)
      else compiled_f)
      else CT_bang (CT_coerce_NONE_to_INT_OPT CT_none, compiled_f) in
     (match l with
      | [] -> xlate_error "special_case_bang: empty argument list?"
      | elnt :: l' ->
       Some (Rform (CT_appc (real_function, CT_formula_ne_list (elnt, l')))))
    | _ -> None;;

exception Not_natural;;

let rec nat_to_number =
 function
    | Node (_, "APPLIST", ((Nvar (_, "S")) :: (v :: []) as v0)) ->
     1 + nat_to_number v
    | Nvar (_, "O") -> 0
    | _ -> raise Not_natural;;

let g_nat_syntax_flag = ref false;;

let set_flags = ref (function () -> ());;

let special_case_S cont_function ast =
 if !g_nat_syntax_flag then (match ast with
 | Node (_, "APPLIST", ((Nvar (_, "S")) :: (v :: []))) as v0 -> begin
   try Some (Rform (CT_int_encapsulator (CT_int (nat_to_number v0))))
   with
   | Not_natural -> None
 end
 | Nvar (_, "O") -> Some (Rform (CT_int_encapsulator (CT_int 0)))
 | _ -> None)
 else None;;

let xlate_formula_special_cases =
 [special_case_qualid;
 special_case_let_construct;
 special_case_fix;
 special_case_cofix;
 special_case_cases;
 special_case_bang; special_case_S];;

let xlate_special_cases cont_function arg =
 let rec xlate_rec =
  function
     | f :: tl ->
      (match f cont_function arg with
      | Some _ as it -> it
      | None -> xlate_rec tl)
     | [] -> None in
 xlate_rec xlate_formula_special_cases;;

let xlate_sort =
  function
    | Coqast.Node (_, "SET", []) -> CT_sortc "Set"
    | Coqast.Node (_, "PROP", []) -> CT_sortc "Prop"
    | Coqast.Node (_, "TYPE", []) -> CT_sortc "Type"
    | _ -> xlate_error "xlate_sort";;

let xlate_formula a =
  !set_flags ();
  let rec ctrec =
    function
      | Nvar (_, id) -> Rform (varc (CT_ident id))
      | Slam (_, na, t) ->
	  let id =
       	    match na with
	      | None -> ctv_ID_OPT_NONE
	      | Some id -> if id = "_" then ctv_ID_OPT_NONE
         	else ctf_ID_OPT_SOME (CT_ident id) in
	  let body = ctrec t in
      	    Rbinder (id, body)
      | Node (_, opn, tl) as it ->
	  (match xlate_special_cases ctrec it with
	     | Some result -> result
	     | None ->
		 let pl, tl' = split_params tl in
		   Rform (xlate_op it opn pl (List.map ctrec tl')))
      | _ -> xlate_error "xlate_formula" in
 strip_Rform (ctrec a);;

let xlate_formula_opt =
  function
    | None -> ctv_FORMULA_OPT_NONE
    | Some e -> CT_coerce_FORMULA_to_FORMULA_OPT (xlate_formula e);;

let xlate_constr c = xlate_formula (Ctast.ast_to_ct c)

let xlate_constr_opt c = xlate_formula_opt (option_app Ctast.ast_to_ct c)

let xlate_hyp_location =
 function
  | InHyp (AI (_,id)) -> xlate_ident id
  | InHyp (MetaId _) -> xlate_error "MetaId should occur only in quotations"
  | InHypType id -> xlate_error "TODO: in (Type of id)"

let xlate_clause l = CT_id_list (List.map xlate_hyp_location l)

(** Tactics
   *)
let strip_targ_spec_list =
 function
    | Targ_spec_list x -> x
    | _ -> xlate_error "strip tactic: non binding-list argument";;

let strip_targ_binding =
 function
    | Targ_binding x -> x
    | _ -> xlate_error "strip tactic: non-binding argument";;

let strip_targ_command =
 function
    | Targ_command x -> x
    | Targ_binding_com x -> x
    | _ -> xlate_error "strip tactic: non-command argument";;

let strip_targ_ident =
 function
    | Targ_ident x -> x
    | _ -> xlate_error "strip tactic: non-ident argument";;

let strip_targ_int =
 function
    | Targ_int x -> x
    | _ -> xlate_error "strip tactic: non-int argument";;

let strip_targ_pattern =
 function
    | Targ_pattern x -> x
    | _ -> xlate_error "strip tactic: non-pattern argument";;

let strip_targ_unfold =
 function
    | Targ_unfold x -> x
    | _ -> xlate_error "strip tactic: non-unfold argument";;

let strip_targ_fixtac =
 function
    | Targ_fixtac x -> x
    | _ -> xlate_error "strip tactic: non-fixtac argument";;

let strip_targ_cofixtac =
 function
    | Targ_cofixtac x -> x
    | _ -> xlate_error "strip tactic: non-cofixtac argument";;

(*Need to transform formula to id for "Prolog" tactic problem *)
let make_ID_from_FORMULA =
 function
    | CT_coerce_ID_to_FORMULA id -> id
    | _ -> xlate_error "make_ID_from_FORMULA: non-formula argument";;

let make_ID_from_iTARG_FORMULA x = make_ID_from_FORMULA (strip_targ_command x);;

let xlate_quantified_hypothesis = function
  | AnonHyp n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
  | NamedHyp id -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id)

let xlate_quantified_hypothesis_opt = function
  | None -> 
      CT_coerce_ID_OPT_to_ID_OR_INT_OPT ctv_ID_OPT_NONE
  | Some (AnonHyp n) -> xlate_int_to_id_or_int_opt n
  | Some (NamedHyp id) -> xlate_id_to_id_or_int_opt id;;

let xlate_explicit_binding (h,c) = 
  CT_binding (xlate_quantified_hypothesis h, xlate_constr c)

let xlate_bindings = function
  | ImplicitBindings l ->
      CT_coerce_FORMULA_LIST_to_SPEC_LIST
        (CT_formula_list (List.map xlate_constr l))
  | ExplicitBindings l ->
      CT_coerce_BINDING_LIST_to_SPEC_LIST
        (CT_binding_list (List.map xlate_explicit_binding l))
  | NoBindings ->
      CT_coerce_FORMULA_LIST_to_SPEC_LIST (CT_formula_list [])

let strip_targ_spec_list =
 function
    | Targ_spec_list x -> x
    | _ -> xlate_error "strip_tar_spec_list";;

let strip_targ_intropatt =
 function
    | Targ_intropatt x -> x
    | _ -> xlate_error "strip_targ_intropatt";;

let get_flag r =
  let conv_flags, red_ids = 
    if r.rDelta then
      [CT_delta], CT_unfbut (List.map qualid_or_meta_to_ct_ID r.rConst)
    else
      (if r.rConst = []
      then (* probably useless: just for compatibility *) []
      else [CT_delta]),
      CT_unf (List.map qualid_or_meta_to_ct_ID r.rConst) in
  let conv_flags = if r.rBeta then CT_beta::conv_flags else conv_flags in
  let conv_flags = if r.rIota then CT_iota::conv_flags else conv_flags in
  let conv_flags = if r.rZeta then CT_zeta::conv_flags else conv_flags in
  (* Rem: EVAR flag obsolète *)
  conv_flags, red_ids

let rec xlate_intro_pattern =
 function
  | IntroOrAndPattern [l] ->
      CT_conj_pattern(CT_intro_patt_list (List.map xlate_intro_pattern l))
  | IntroOrAndPattern ll ->
      let insert_conj l = CT_conj_pattern (CT_intro_patt_list
        (List.map xlate_intro_pattern l))
      in CT_disj_pattern(CT_intro_patt_list (List.map insert_conj ll))
  | IntroWildcard -> xlate_error "TODO: '_' intro pattern"
  | IntroIdentifier c -> CT_coerce_ID_to_INTRO_PATT(xlate_ident c)

let compute_INV_TYPE_from_string = function
   "InversionClear" -> CT_inv_clear
 | "SimpleInversion" -> CT_inv_simple
 | "Inversion" -> CT_inv_regular
 | _ -> failwith "unexpected Inversion type";;

let is_tactic_special_case = function
    "AutoRewrite" -> true
  | _ -> false;;

let tactic_special_case cont_function cvt_arg = function
    "AutoRewrite", (tac::v::bl) ->
      CT_autorewrite
	(CT_id_ne_list(xlate_id v, List.map xlate_id bl),
	   CT_coerce_TACTIC_COM_to_TACTIC_OPT(cont_function tac))
  | "AutoRewrite", (v::bl) ->
      CT_autorewrite
	(CT_id_ne_list(xlate_id v, List.map xlate_id bl),
	 CT_coerce_NONE_to_TACTIC_OPT CT_none)
  | _ -> assert false;;
	      
let xlate_context_pattern = function
  | Term v -> 
      CT_coerce_FORMULA_to_CONTEXT_PATTERN (xlate_constr v)
  | Subterm (idopt, v) ->
      CT_context(xlate_ident_opt idopt, xlate_constr v)


let xlate_match_context_hyps = function
  | NoHypId b -> CT_premise_pattern(ctv_ID_OPT_NONE, xlate_context_pattern b)
  | Hyp ((_,id),b) -> CT_premise_pattern(ctf_ID_OPT_SOME (xlate_ident id),
                                    xlate_context_pattern b)


let xlate_largs_to_id_unit largs =
  match List.map xlate_id_unit largs with
      fst::rest -> fst, rest
    | _ -> assert false;;

let rec (xlate_tacarg:raw_tactic_arg -> ct_TACTIC_ARG) =
  function
    | TacVoid ->
	CT_void
    | Tacexp t -> 
	CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_tactic t)
    | Integer n ->
	CT_coerce_ID_OR_INT_to_TACTIC_ARG
	  (CT_coerce_INT_to_ID_OR_INT (CT_int n))
    | Reference r ->
	CT_coerce_ID_OR_INT_to_TACTIC_ARG
	  (CT_coerce_ID_to_ID_OR_INT (reference_to_ct_ID r))
    | TacDynamic _ ->
	failwith "Dynamics not treated in xlate_ast"
    | ConstrMayEval (ConstrTerm c) ->
	CT_coerce_FORMULA_to_TACTIC_ARG (xlate_constr c)
    | ConstrMayEval _ ->
	xlate_error "TODO: Eval/Inst as tactic argument"
    | MetaIdArg _ ->
	xlate_error "MetaIdArg should only be used in quotations"
    | MetaNumArg (_,n) ->
	CT_coerce_FORMULA_to_TACTIC_ARG 
	 (CT_coerce_ID_to_FORMULA(CT_metac (CT_int n)))
    | t ->
	CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_call_or_tacarg t)

and (xlate_call_or_tacarg:raw_tactic_arg -> ct_TACTIC_COM) =
 function
   (* Moved from xlate_tactic *)
    | TacCall (_, r, a::l) ->
	CT_simple_user_tac
	  (reference_to_ct_ID r,
	    CT_tactic_arg_list(xlate_tacarg a,List.map xlate_tacarg l))
    | Reference (Coqast.RIdent (_,s)) -> ident_tac s
    | t -> xlate_error "TODO: result other than tactic or constr"

and xlate_red_tactic =
 function
  | Red true -> xlate_error ""
  | Red false -> CT_red
  | Hnf -> CT_hnf
  | Simpl -> CT_simpl
  | Cbv flag_list ->
     let conv_flags, red_ids = get_flag flag_list in
     CT_cbv (CT_conversion_flag_list conv_flags, red_ids)
  | Lazy flag_list ->
     let conv_flags, red_ids = get_flag flag_list in
     CT_cbv (CT_conversion_flag_list conv_flags, red_ids)
  | Unfold unf_list ->
     let ct_unf_list = List.map (fun (nums,qid) -> 
       CT_unfold_occ (CT_int_list (List.map (fun x -> CT_int x) nums),
         qualid_or_meta_to_ct_ID qid)) unf_list in
     (match ct_unf_list with
      | first :: others -> CT_unfold (CT_unfold_ne_list (first, others))
      | [] -> error "there should be at least one thing to unfold")
  | Fold formula_list -> 
      CT_fold(CT_formula_list(List.map xlate_constr formula_list))
  | Pattern l ->
     let pat_list = List.map (fun (nums,c) ->
          CT_pattern_occ
           (CT_int_list (List.map (fun x -> CT_int x) nums),
            xlate_constr c)) l in
     (match pat_list with
      | first :: others -> CT_pattern (CT_pattern_ne_list (first, others))
      | [] -> error "Expecting at least one pattern in a Pattern command")
  | ExtraRedExpr _ -> xlate_error "TODO: ExtraRedExpr"

and xlate_tactic =
 function
   | TacFun (largs, t) ->
       let fst, rest =  xlate_largs_to_id_unit largs in
       CT_tactic_fun (CT_id_unit_list(fst, rest), xlate_tactic t)
   | TacFunRec _ -> xlate_error "Merged with Tactic Definition"
   | TacThen (t1,t2) -> 
       (match xlate_tactic t1 with
            CT_then(a,l) -> CT_then(a,l@[xlate_tactic t2])
	  | t -> CT_then (t,[xlate_tactic t2]))
   | TacThens(t1,[]) -> assert false
   | TacThens(t1,t::l) ->
       let ct = xlate_tactic t in
       let cl = List.map xlate_tactic l in
       (match xlate_tactic t1 with
	    CT_then(ct1,cl1) -> CT_then(ct1, cl1@[CT_parallel(ct, cl)])
	  | ct1 -> CT_then(ct1,[CT_parallel(ct, cl)]))
   | TacFirst([]) -> assert false
   | TacFirst(t1::l)-> CT_first(xlate_tactic t1, List.map xlate_tactic l)
   | TacSolve([]) -> assert false
   | TacSolve(t1::l)-> CT_tacsolve(xlate_tactic t1, List.map xlate_tactic l)
   | TacDo(n, t) -> CT_do(CT_int n, xlate_tactic t)
   | TacTry t -> CT_try (xlate_tactic t)
   | TacRepeat t -> CT_repeat(xlate_tactic t)
   | TacAbstract(t,id_opt) -> 
       CT_abstract((match id_opt with
		       	None -> ctv_ID_OPT_NONE
		      | Some id -> ctf_ID_OPT_SOME (CT_ident (string_of_id id))),
		   xlate_tactic t)
   | TacProgress t -> CT_progress(xlate_tactic t)
   | TacOrelse(t1,t2) -> CT_orelse(xlate_tactic t1, xlate_tactic t2)
   | TacMatch (exp, rules) ->
        CT_match_tac(CT_coerce_DEF_BODY_to_LET_VALUE(formula_to_def_body exp),
                     match List.map 
                       (function 
                          | Pat ([],p,tac) ->
                              CT_match_tac_rule(xlate_context_pattern p,
                                                mk_let_value tac)
                          | Pat (_,p,tac) -> xlate_error"No hyps in pure Match"
                          | All tac ->
                              CT_match_tac_rule
                                (CT_coerce_FORMULA_to_CONTEXT_PATTERN
                                   CT_existvarc, 
                                   mk_let_value tac)) rules with
                         | [] -> assert false
                         | fst::others ->
                             CT_match_tac_rules(fst, others))
   | TacMatchContext (_,[]) -> failwith ""
   | TacMatchContext (lr,rule1::rules) ->
         (* TODO : traiter la direction "lr" *)
         CT_match_context(xlate_context_rule rule1,
                          List.map xlate_context_rule rules)
   | TacLetIn (l, t) ->
       let cvt_clause =
         function
             ((_,s),None,ConstrMayEval v) ->
                 CT_let_clause(xlate_ident s,
                               CT_coerce_DEF_BODY_to_LET_VALUE
                               (formula_to_def_body v))
           | ((_,s),None,Tacexp t) -> 
                 CT_let_clause(xlate_ident s,
                               CT_coerce_TACTIC_COM_to_LET_VALUE
                               (xlate_tactic t))
           | ((_,s),None,t) -> 
                 CT_let_clause(xlate_ident s,
                               CT_coerce_TACTIC_COM_to_LET_VALUE
                               (xlate_call_or_tacarg t))
           | ((_,s),Some c,v) -> xlate_error "TODO: Let id : c := t In t'" in
         let cl_l = List.map cvt_clause l in
         (match cl_l with
            | [] -> assert false 
            | fst::others ->
                CT_lettac (CT_let_clauses(fst, others), mk_let_value t))
   | TacLetCut _ -> xlate_error "Unclear future of syntax Let x := t"
   | TacLetRecIn _ -> xlate_error "TODO: Rec x = t In"
   | TacAtom (_, t) -> xlate_tac t 
   | TacFail n -> CT_fail (CT_int n)
   | TacId -> CT_idtac
   | TacInfo t -> CT_info(xlate_tactic t)
   | TacArg a -> xlate_call_or_tacarg a

and xlate_tac =
  function
    | TacExtend ("Absurd",[c]) ->
       CT_absurd (xlate_constr (out_gen rawwit_constr c))
    | TacChange (f, b) -> CT_change (xlate_constr f, xlate_clause b)
    | TacExtend ("Contradiction",[]) -> CT_contradiction
    | TacDoubleInduction (AnonHyp n1, AnonHyp n2) ->
	CT_tac_double (CT_int n1, CT_int n2)
    | TacDoubleInduction _ -> xlate_error "TODO: Double Induction id1 id2"
    | TacExtend ("Discriminate", [idopt]) ->
     CT_discriminate_eq
         (xlate_quantified_hypothesis_opt
	    (out_gen (wit_opt rawwit_quant_hyp) idopt))
    | TacExtend ("DEq", [idopt]) ->
     CT_simplify_eq
         (xlate_ident_opt (out_gen (wit_opt rawwit_ident) idopt))
    | TacExtend ("Injection", [idopt]) ->
     CT_injection_eq
         (xlate_quantified_hypothesis_opt
	    (out_gen (wit_opt rawwit_quant_hyp) idopt))
    | TacFix (idopt, n) ->
     CT_fixtactic (xlate_ident_opt idopt, CT_int n, CT_fix_tac_list [])
    | TacMutualFix (id, n, fixtac_list) ->
     let f (id,n,c) = CT_fixtac (xlate_ident id, CT_int n, xlate_constr c) in
     CT_fixtactic
      (ctf_ID_OPT_SOME (xlate_ident id), CT_int n,
      CT_fix_tac_list (List.map f fixtac_list))
    | TacCofix idopt ->
       CT_cofixtactic (xlate_ident_opt idopt, CT_cofix_tac_list [])
    | TacMutualCofix (id, cofixtac_list) ->
     let f (id,c) = CT_cofixtac (xlate_ident id, xlate_constr c) in
     CT_cofixtactic
      (CT_coerce_ID_to_ID_OPT (xlate_ident id),
      CT_cofix_tac_list (List.map f cofixtac_list))
    | TacIntrosUntil (NamedHyp id) -> CT_intros_until (xlate_ident id)
    | TacIntrosUntil (AnonHyp n) -> xlate_error "TODO: Intros until n"
    | TacIntroMove (Some id1, Some (_,id2)) ->
     CT_intro_after(CT_coerce_ID_to_ID_OPT (xlate_ident id1),xlate_ident id2)
    | TacIntroMove (None, Some (_,id2)) ->
	CT_intro_after(CT_coerce_NONE_to_ID_OPT CT_none, xlate_ident id2)
    | TacMove (true, (_,id1), (_,id2)) ->
	CT_move_after(xlate_ident id1, xlate_ident id2)
    | TacMove (false, id1, id2) -> xlate_error "Non dep Move is only internal"
    | TacIntroPattern [] -> CT_intros (CT_intro_patt_list [])
    | TacIntroPattern patt_list ->
	CT_intros (CT_intro_patt_list (List.map xlate_intro_pattern patt_list))
    | TacIntroMove (Some id, None) ->
     CT_intros (CT_intro_patt_list[CT_coerce_ID_to_INTRO_PATT(xlate_ident id)])
    | TacIntroMove (None, None) -> xlate_error "TODO: Intro"
    | TacLeft bindl -> CT_left (xlate_bindings bindl)
    | TacRight bindl -> CT_right (xlate_bindings bindl)
    | TacSplit bindl -> CT_split (xlate_bindings bindl)
    | TacExtend ("Replace", [c1; c2]) ->
     let c1 = xlate_constr (out_gen rawwit_constr c1) in
     let c2 = xlate_constr (out_gen rawwit_constr c2) in
     CT_replace_with (c1, c2)
    |
      TacExtend ("Rewrite", [b; cbindl]) ->
     let b = out_gen Extraargs.rawwit_orient b in
     let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
     let c = xlate_constr c and bindl = xlate_bindings bindl in
     if b then CT_rewrite_lr (c, bindl, ctv_ID_OPT_NONE)
     else CT_rewrite_rl (c, bindl, ctv_ID_OPT_NONE)
    | TacExtend ("RewriteIn", [b; cbindl; id]) ->
     let b = out_gen Extraargs.rawwit_orient b in
     let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
     let c = xlate_constr c and bindl = xlate_bindings bindl in
     let id = ctf_ID_OPT_SOME (xlate_ident (out_gen rawwit_ident id)) in
     if b then CT_rewrite_lr (c, bindl, id)
     else CT_rewrite_rl (c, bindl, id)
    | TacExtend ("ConditionalRewrite", [t; b; cbindl]) ->
     let t = out_gen rawwit_tactic t in
     let b = out_gen Extraargs.rawwit_orient b in
     let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
     let c = xlate_constr c and bindl = xlate_bindings bindl in
     if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
     else CT_condrewrite_rl (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
    | TacExtend ("ConditionalRewriteIn", [t; b; cbindl; id]) ->
     let t = out_gen rawwit_tactic t in
     let b = out_gen Extraargs.rawwit_orient b in
     let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
     let c = xlate_constr c and bindl = xlate_bindings bindl in
     let id = ctf_ID_OPT_SOME (xlate_ident (out_gen rawwit_ident id)) in
     if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, id)
     else CT_condrewrite_rl (xlate_tactic t, c, bindl, id)
    | TacExtend ("DependentRewrite", [b; id_or_constr]) ->
      let b = out_gen Extraargs.rawwit_orient b in
      (match genarg_tag id_or_constr with
	| IdentArgType -> (*Dependent Rewrite/SubstHypInConcl*)
	    let id = xlate_ident (out_gen rawwit_ident id_or_constr) in
	    if b then CT_deprewrite_lr id else CT_deprewrite_rl id
	| ConstrArgType -> (*CutRewrite/SubstConcl*)
	    let c = xlate_constr (out_gen rawwit_constr id_or_constr) in
	    if b then CT_cutrewrite_lr (c, ctv_ID_OPT_NONE)
	    else CT_cutrewrite_rl (c, ctv_ID_OPT_NONE)
	| _ -> xlate_error "")
    | TacExtend ("DependentRewrite", [b; c; id]) -> (*CutRewrite in/SubstHyp*)
      let b = out_gen Extraargs.rawwit_orient b in
      let c = xlate_constr (out_gen rawwit_constr c) in
      let id = xlate_ident (out_gen rawwit_ident id) in
      if b then CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
      else CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
    | TacReflexivity -> CT_reflexivity
    | TacSymmetry -> CT_symmetry
    | TacTransitivity c -> CT_transitivity (xlate_constr c)
    | TacAssumption -> CT_assumption
    | TacExact c -> CT_exact (xlate_constr c)
    | TacDestructHyp (true, (_,id)) -> CT_cdhyp (xlate_ident id)
    | TacDestructHyp (false, (_,id)) -> CT_dhyp (xlate_ident id)
    | TacDestructConcl -> CT_dconcl
    | TacSuperAuto (nopt,l,a3,a4) ->
      CT_superauto(
        xlate_int_opt nopt,
        xlate_qualid_list l,
        (if a3 then CT_destructing else CT_coerce_NONE_to_DESTRUCTING CT_none),
        (if a4 then CT_usingtdb else CT_coerce_NONE_to_USINGTDB CT_none))
    | TacAutoTDB nopt -> CT_autotdb (xlate_int_opt nopt)
    | TacAuto (nopt, Some []) -> CT_auto (xlate_int_opt nopt)
    | TacAuto (nopt, None) -> CT_auto_with (xlate_int_opt nopt, CT_star)
    | TacAuto (nopt, Some (id1::idl)) ->
	CT_auto_with(xlate_int_opt nopt,
             CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
             CT_id_ne_list(CT_ident id1, List.map (fun x -> CT_ident x) idl)))
    | TacExtend ("EAuto", [nopt; popt; idl]) ->
	let first_n =
	  match out_gen (wit_opt rawwit_int_or_var) nopt with
	    | Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
	    | Some ArgArg n -> xlate_int_to_id_or_int_opt n
	    | None -> none_in_id_or_int_opt in
	let second_n =
	  match out_gen (wit_opt rawwit_int_or_var) popt with
	    | Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
	    | Some ArgArg n -> xlate_int_to_id_or_int_opt n
	    | None -> none_in_id_or_int_opt in
	let idl = out_gen Eauto.rawwit_hintbases idl in
          (match idl with
	    None -> CT_eauto_with(first_n, second_n, CT_star)
	  | Some [] -> CT_eauto(first_n, second_n)
	  | Some (a::l) -> 
	      CT_eauto_with(first_n, second_n,
			    CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR
			      (CT_id_ne_list
				 (CT_ident a,
				  List.map (fun x -> CT_ident x) l))))
    | TacExtend ("Prolog", [cl; n]) ->
      let cl = List.map xlate_constr (out_gen (wit_list0 rawwit_constr) cl) in
      (match out_gen wit_int_or_var n with
	| ArgVar _ -> xlate_error ""
	| ArgArg n -> CT_prolog (CT_formula_list cl, CT_int  n))
    | TacExtend ("EApply", [cbindl]) ->
     let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
     let c = xlate_constr c and bindl = xlate_bindings bindl in
     CT_eapply (c, bindl)
    | TacTrivial (Some []) -> CT_trivial
    | TacTrivial None -> CT_trivial_with(CT_star)
    | TacTrivial (Some (id1::idl)) ->
	 CT_trivial_with(CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
            (CT_id_ne_list(CT_ident id1,List.map (fun x -> CT_ident x) idl))))
    | TacReduce (red, l) ->
     CT_reduce (xlate_red_tactic red, xlate_clause l)
    | TacApply (c,bindl) ->
     CT_apply (xlate_constr c, xlate_bindings bindl)
    | TacConstructor (n_or_meta, bindl) ->
	let n = match n_or_meta with AI n -> n | MetaId _ -> xlate_error ""
	in CT_constructor (CT_int n, xlate_bindings bindl)
    | TacSpecialize (nopt, (c,sl)) ->
     CT_specialize (xlate_int_opt nopt, xlate_constr c, xlate_bindings sl)
    | TacGeneralize [] -> xlate_error ""
    | TacGeneralize (first :: cl) ->
     CT_generalize
      (CT_formula_ne_list (xlate_constr first, List.map xlate_constr cl))
    | TacGeneralizeDep c ->
	CT_generalize_dependent (xlate_constr c)
    | TacElimType c -> CT_elim_type (xlate_constr c)
    | TacCaseType c -> CT_case_type (xlate_constr c)
    | TacElim ((c1,sl), None) ->
     CT_elim (xlate_constr c1, xlate_bindings sl,
              CT_coerce_NONE_to_USING CT_none)
    | TacElim ((c1,sl), Some (c2,sl2)) ->
     CT_elim (xlate_constr c1, xlate_bindings sl,
              CT_using (xlate_constr c2, xlate_bindings sl2))
    | TacCase (c1,sl) ->
     CT_casetac (xlate_constr c1, xlate_bindings sl)
    | TacOldInduction h -> CT_induction (xlate_quantified_hypothesis h)
    | TacOldDestruct h -> CT_destruct (xlate_quantified_hypothesis h)
    | TacCut c -> CT_cut (xlate_constr c)
    | TacLApply c -> CT_use (xlate_constr c)
    | TacDecompose ([],c) ->
	xlate_error "Decompose : empty list of identifiers?"
    | TacDecompose (id::l,c) ->
	let id' = qualid_or_meta_to_ct_ID id in
	let l' = List.map qualid_or_meta_to_ct_ID l in
        CT_decompose_list(CT_id_ne_list(id',l'),xlate_constr c)
    | TacDecomposeAnd c -> xlate_error "TODO: Decompose Record"
    | TacDecomposeOr c -> xlate_error "TODO: Decompose Sum"
    | TacClear [] ->
	xlate_error "Clear expects a non empty list of identifiers"
    | TacClear (id::idl) ->
       let idl' = List.map ident_or_meta_to_ct_ID idl in
       CT_clear (CT_id_ne_list (ident_or_meta_to_ct_ID id, idl'))
    | (*For translating tactics/Inv.v *)
      TacExtend ("SimpleInversion"|"Inversion"|"InversionClear" as s, [id]) ->
	let quant_hyp =  out_gen rawwit_quant_hyp id in
	  CT_inversion(compute_INV_TYPE_from_string s,
		       xlate_quantified_hypothesis quant_hyp, CT_id_list [])
    | TacExtend ("SimpleInversion"|"Inversion"|"InversionClear" as s,
        [id;copt_or_idl]) ->
	let quant_hyp = (out_gen rawwit_quant_hyp id) in
	let id = xlate_quantified_hypothesis quant_hyp in
	(match genarg_tag copt_or_idl with
	  | List1ArgType IdentArgType -> (* InvIn *)
	      let idl = out_gen (wit_list1 rawwit_ident) copt_or_idl in
	      CT_inversion (compute_INV_TYPE_from_string s, id,
	        CT_id_list (List.map xlate_ident idl))
	  | OptArgType ConstrArgType -> (* DInv *)
	      let copt = out_gen (wit_opt rawwit_constr) copt_or_idl in
	      CT_depinversion
		(compute_INV_TYPE_from_string s, id, xlate_constr_opt copt)
	  | _ -> xlate_error "")
    | TacExtend ("InversionUsing", [id; c]) ->
     let id = xlate_quantified_hypothesis (out_gen rawwit_quant_hyp id) in
     let c = out_gen rawwit_constr c in
     CT_use_inversion (id, xlate_constr c, CT_id_list [])
    | TacExtend ("InversionUsing", [id; c; idlist]) ->
     let id = xlate_quantified_hypothesis (out_gen rawwit_quant_hyp id) in
     let c = out_gen rawwit_constr c in
     let idlist = out_gen (wit_list1 rawwit_ident) idlist in
     CT_use_inversion (id, xlate_constr c,
       CT_id_list (List.map xlate_ident idlist))
    | TacExtend ("Omega", []) -> CT_omega
    | TacRename (_, _) -> xlate_error "TODO: Rename id into id'"
    | TacClearBody _ -> xlate_error "TODO: Clear Body H"
    | TacDAuto (_, _) -> xlate_error "TODO: DAuto"
    | TacNewDestruct _ -> xlate_error "TODO: NewDestruct"
    | TacNewInduction _ -> xlate_error "TODO: NewInduction"
    | TacInstantiate (_, _) -> xlate_error "TODO: Instantiate"
    | TacLetTac (_, _, _) -> xlate_error "TODO: LetTac"
    | TacForward (_, _, _) -> xlate_error "TODO: Assert/Pose id:=c"
    | TacTrueCut (_, _) -> xlate_error "TODO: Assert id:t"
    | TacAnyConstructor tacopt -> xlate_error "TODO: Constructor tac"
    | TacExtend (id, l) ->
     CT_user_tac (CT_ident id, CT_targ_list (List.map coerce_genarg_to_TARG l))
    | TacAlias (_, _, _) -> xlate_error "TODO: aliases"

and coerce_genarg_to_TARG x =
 match Genarg.genarg_tag x with
  (* Basic types *)
  | BoolArgType -> xlate_error "TODO: generic boolean argument"
  | IntArgType ->
      let n = out_gen rawwit_int x in
      CT_coerce_ID_OR_INT_to_TARG (CT_coerce_INT_to_ID_OR_INT (CT_int n))
  | IntOrVarArgType ->
      let x = match out_gen rawwit_int_or_var x with
	| ArgArg n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
	| ArgVar (_,id) -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id) in
      CT_coerce_ID_OR_INT_to_TARG x
  | StringArgType ->
     let s = CT_string (out_gen rawwit_string x) in
     CT_coerce_ID_OR_STRING_to_TARG (CT_coerce_STRING_to_ID_OR_STRING s)
  | PreIdentArgType ->
      let id = CT_ident (out_gen rawwit_pre_ident x) in
      CT_coerce_ID_OR_INT_to_TARG (CT_coerce_ID_to_ID_OR_INT id)
  | IdentArgType ->
      let id = xlate_ident (out_gen rawwit_ident x) in
      CT_coerce_ID_OR_INT_to_TARG (CT_coerce_ID_to_ID_OR_INT id)
  | QualidArgType ->
      let id = tac_qualid_to_ct_ID (snd (out_gen rawwit_qualid x)) in
      CT_coerce_ID_OR_INT_to_TARG (CT_coerce_ID_to_ID_OR_INT id)
  (* Specific types *)
  | ConstrArgType ->
      CT_coerce_FORMULA_to_TARG (xlate_constr (out_gen rawwit_constr x))
  | ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
  | QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
  | TacticArgType ->
      let t = xlate_tactic (out_gen rawwit_tactic x) in
      CT_coerce_TACTIC_COM_to_TARG t
  | CastedOpenConstrArgType -> xlate_error "TODO: open constr"
  | ConstrWithBindingsArgType -> xlate_error "TODO: constr with bindings"
  | RedExprArgType -> xlate_error "TODO: red expr as generic argument"
  | List0ArgType l -> xlate_error "TODO: lists of generic arguments"
  | List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
  | OptArgType x -> xlate_error "TODO: optional generic arguments"
  | PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
  | ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"
and xlate_context_rule =
  function
    | Pat (hyps, concl_pat, tactic) ->
	CT_context_rule(
          CT_context_hyp_list (List.map xlate_match_context_hyps hyps),
	  xlate_context_pattern concl_pat, xlate_tactic tactic)
    | All te ->
	xlate_error "TODO: wildcard match_context_rule"
and formula_to_def_body =
  function
    | ConstrEval (red, f) ->
        CT_coerce_EVAL_CMD_to_DEF_BODY(
	CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
                xlate_red_tactic red, xlate_constr f))
    | ConstrContext _ -> xlate_error "TODO: Inst"
    | ConstrTypeOf _ -> xlate_error "TODO: Check"
    | ConstrTerm c -> ct_coerce_FORMULA_to_DEF_BODY(xlate_constr c)

and mk_let_value = function 
    TacArg (ConstrMayEval v) ->
      CT_coerce_DEF_BODY_to_LET_VALUE(formula_to_def_body v)
  | v -> CT_coerce_TACTIC_COM_to_LET_VALUE(xlate_tactic v);;

let coerce_genarg_to_VARG x =
 match Genarg.genarg_tag x with
  (* Basic types *)
  | BoolArgType -> xlate_error "TODO: generic boolean argument"
  | IntArgType ->
      let n = out_gen rawwit_int x in
      CT_coerce_ID_OR_INT_OPT_to_VARG
	(CT_coerce_INT_OPT_to_ID_OR_INT_OPT
	   (CT_coerce_INT_to_INT_OPT (CT_int n)))
  | IntOrVarArgType ->
      (match out_gen rawwit_int_or_var x with
	| ArgArg n -> 
      CT_coerce_ID_OR_INT_OPT_to_VARG
	(CT_coerce_INT_OPT_to_ID_OR_INT_OPT
	   (CT_coerce_INT_to_INT_OPT (CT_int n)))
	| ArgVar (_,id) ->
	    CT_coerce_ID_OPT_OR_ALL_to_VARG
	      (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
	        (CT_coerce_ID_to_ID_OPT (xlate_ident id))))
  | StringArgType ->
     let s = CT_string (out_gen rawwit_string x) in
     CT_coerce_STRING_OPT_to_VARG (CT_coerce_STRING_to_STRING_OPT s)
  | PreIdentArgType ->
      let id = CT_ident (out_gen rawwit_pre_ident x) in
      CT_coerce_ID_OPT_OR_ALL_to_VARG
	      (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
	        (CT_coerce_ID_to_ID_OPT id))
  | IdentArgType ->
      let id = xlate_ident (out_gen rawwit_ident x) in
      CT_coerce_ID_OPT_OR_ALL_to_VARG
	      (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
	        (CT_coerce_ID_to_ID_OPT id))
  | QualidArgType ->
      let id = tac_qualid_to_ct_ID (snd (out_gen rawwit_qualid x)) in
      CT_coerce_ID_OPT_OR_ALL_to_VARG
	      (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
	        (CT_coerce_ID_to_ID_OPT id))
  (* Specific types *)
  | ConstrArgType ->
     CT_coerce_FORMULA_OPT_to_VARG 
      (CT_coerce_FORMULA_to_FORMULA_OPT (xlate_constr (out_gen rawwit_constr x)))
  | ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
  | QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
  | TacticArgType ->
      let t = xlate_tactic (out_gen rawwit_tactic x) in
      CT_coerce_TACTIC_OPT_to_VARG (CT_coerce_TACTIC_COM_to_TACTIC_OPT t)
  | CastedOpenConstrArgType -> xlate_error "TODO: open constr"
  | ConstrWithBindingsArgType -> xlate_error "TODO: constr with bindings"
  | RedExprArgType -> xlate_error "TODO: red expr as generic argument"
  | List0ArgType l -> xlate_error "TODO: lists of generic arguments"
  | List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
  | OptArgType x -> xlate_error "TODO: optional generic arguments"
  | PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
  | ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"


let xlate_thm x = CT_thm (match x with
  | Theorem -> "Theorem"
  | Remark -> "Remark"
  | Lemma -> "Lemma"
  | Fact -> "Fact"
  | Decl -> "Decl")


let xlate_defn x = CT_defn (match x with
 | LocalDefinition -> "Local"
 | Definition -> "Definition")


let xlate_defn_or_thm =
  function
 (* Unable to decide if a fact in one section or at toplevel, a remark
    at toplevel or a theorem or a Definition *)
 | StartTheoremProof k -> CT_coerce_THM_to_DEFN_OR_THM (xlate_thm k)
 | StartDefinitionBody k -> CT_coerce_DEFN_to_DEFN_OR_THM (xlate_defn k);;

let xlate_var x = CT_var (match x with
 | AssumptionParameter -> "Parameter"
 | AssumptionAxiom -> "Axiom"
 | AssumptionVariable -> "Variable"
 | AssumptionHypothesis -> "Hypothesis");;


let xlate_dep =
 function
    | true -> CT_dep "Induction for"
    | false -> CT_dep "Minimality for";;

let xlate_locn =
 function
    | GoTo n -> CT_coerce_INT_to_INT_OR_LOCN (CT_int n)
    | GoTop -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "top")
    | GoPrev -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "prev")
    | GoNext -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "next")

let xlate_search_restr =
  function
    | SearchOutside [] -> CT_coerce_NONE_to_IN_OR_OUT_MODULES CT_none
    | SearchInside (m1::l1) ->
	CT_in_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
	List.map loc_qualid_to_ct_ID l1))
    | SearchOutside (m1::l1) ->
	CT_out_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
	List.map loc_qualid_to_ct_ID l1))
    | SearchInside [] -> xlate_error "bad extra argument for Search"

let xlate_check =
 function
    | "CHECK" -> "Check"
    | "PRINTTYPE" -> "Type"
    | _ -> xlate_error "xlate_check";;

let build_constructors l =
 let f (coe,(id,c)) =
   if coe then xlate_error "TODO: coercions in constructors"
   else CT_constr (xlate_ident id, xlate_constr c) in
 CT_constr_list (List.map f l)

let build_record_field_list l =
 let build_record_field (coe,d) = match d with
  | AssumExpr (id,c) ->
      if coe then CT_constr_coercion (xlate_ident id, xlate_constr c)
      else
	CT_coerce_CONSTR_to_RECCONSTR
	  (CT_constr (xlate_ident id, xlate_constr c))
  | DefExpr (id,c,topt) ->
      xlate_error "TODO: manifest fields in Record" in
 CT_recconstr_list (List.map build_record_field l);;

let xlate_ast =
 let rec xlate_ast_aux =
  function
     | Node (_, s, tl) ->
      CT_astnode (CT_ident s, CT_ast_list (List.map xlate_ast_aux tl))
     | Nvar (_, s) ->
      CT_coerce_ID_OR_STRING_to_AST
       (CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
     | Slam (_, (Some s), t) ->
      CT_astslam (CT_coerce_ID_to_ID_OPT (CT_ident s), xlate_ast_aux t)
     | Slam (_, None, t) -> CT_astslam (ctv_ID_OPT_NONE, xlate_ast_aux t)
     | Num (_, i) -> failwith "Numbers not treated in xlate_ast"
     | Id (_, s) ->
      CT_coerce_ID_OR_STRING_to_AST
       (CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
     | Str (_, s) ->
      CT_coerce_ID_OR_STRING_to_AST
       (CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
     | Dynamic(_,_) -> failwith "Dynamics not treated in xlate_ast"
     | Path (_, sl) ->
      CT_astpath
       (CT_id_list (List.map (function s -> CT_ident s) sl)) in
 xlate_ast_aux;;

let get_require_flags impexp spec =
 let ct_impexp =
  match impexp with
  | false -> CT_import
  | true -> CT_export in
 let ct_spec =
  match spec with
  | None -> ctv_SPEC_OPT_NONE
  | Some true -> CT_spec
  | Some false -> ctv_SPEC_OPT_NONE in
 ct_impexp, ct_spec;;

let cvt_optional_eval_for_definition c1 optional_eval =
  match optional_eval with
    None -> ct_coerce_FORMULA_to_DEF_BODY (xlate_constr c1)
  | Some red ->
      CT_coerce_EVAL_CMD_to_DEF_BODY(
      CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
	      xlate_red_tactic red,
	      xlate_constr c1))

let cvt_vernac_binder = function
  | (id,c) ->
     CT_binder(CT_id_opt_ne_list (xlate_ident_opt (Some id),[]),xlate_constr c)

let cvt_vernac_binders args =
  CT_binder_list(List.map cvt_vernac_binder args)


let xlate_vernac =
 function
   | VernacDeclareTacticDefinition (loc,[(_,id),TacFun (largs,tac)]) ->
       let fst, rest = xlate_largs_to_id_unit largs in
       let extract = function CT_unit -> xlate_error "TODO: void parameter"
	 | CT_coerce_ID_to_ID_UNIT x -> x in
       let largs = List.map extract (fst::rest) in
       CT_tactic_definition(xlate_ident id,
                           (* TODO, replace CT_id_list by CT_id_unit_list *)
			    CT_id_list largs,
			    xlate_tactic tac)
   | VernacDeclareTacticDefinition 
       (loc,((id,TacFunRec (largs,tac))::_ as the_list)) ->
       let x_rec_tacs =
	 List.map
           (function
	     | ((_,x),TacFunRec ((_,fst),(argl,tac))) ->
		  let fst, rest = xlate_largs_to_id_unit ((Some fst)::argl) in
	 	  CT_rec_tactic_fun(xlate_ident x,
				 CT_id_unit_list(fst, rest),
				 xlate_tactic tac)
	     | ((_,x),tac) ->
	 	  CT_rec_tactic_fun(xlate_ident x,
                                 (* Pas clair... *)
				 CT_id_unit_list (xlate_id_unit (Some x), []),
				 xlate_tactic tac)) the_list in
       let fst, others = match x_rec_tacs with
	   fst::others -> fst, others
	 | _ -> assert false in
       CT_rec_tactic_definition(CT_rec_tactic_fun_list(fst, others))
    | VernacDeclareTacticDefinition (_,[(_,id),tac]) ->
       CT_tactic_definition(xlate_ident id, CT_id_list[], xlate_tactic tac)
    | VernacDeclareTacticDefinition (loc,_) -> xlate_error "Shouldn't occur"
    | VernacLoad (verbose,s) ->
      CT_load (
       (match verbose with
        | false -> CT_coerce_NONE_to_VERBOSE_OPT CT_none
        | true -> CT_verbose),
       CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
    | VernacCheckMayEval (Some red, numopt, f) ->
      let red = xlate_red_tactic red in
      CT_coerce_EVAL_CMD_to_COMMAND
       (CT_eval (xlate_int_opt numopt, red, xlate_constr f))
    | VernacChdir (Some str) -> CT_cd (ctf_STRING_OPT_SOME (CT_string str))
    | VernacChdir None -> CT_cd ctf_STRING_OPT_NONE
    | VernacAddLoadPath (false,str,None) -> CT_addpath (CT_string str)
    | VernacAddLoadPath (true,str,None) -> CT_recaddpath (CT_string str)
    | VernacAddLoadPath (_,str,Some x) ->
	xlate_error"TODO: Add (Rec) LoadPath as"
    | VernacRemoveLoadPath str -> CT_delpath (CT_string str)
    | VernacToplevelControl Quit -> CT_quit
    | VernacToplevelControl _ -> xlate_error "TODO?: Drop/ProtectedToplevel"
      (*ML commands *)
    | VernacAddMLPath (false,str) -> CT_ml_add_path (CT_string str)
    | VernacAddMLPath (true,str) -> CT_rec_ml_add_path (CT_string str)
    | VernacDeclareMLModule [] -> failwith ""
    | VernacDeclareMLModule (str :: l) ->
      CT_ml_declare_modules
       (CT_string_ne_list (CT_string str, List.map (fun x -> CT_string x) l))
    | VernacGoal c ->
	CT_coerce_THEOREM_GOAL_to_COMMAND (CT_goal (xlate_constr c))
    | VernacAbort (Some id) -> CT_abort(ctf_ID_OPT_OR_ALL_SOME(xlate_ident id))
    | VernacAbort None -> CT_abort ctv_ID_OPT_OR_ALL_NONE
    | VernacAbortAll -> CT_abort ctv_ID_OPT_OR_ALL_ALL
    | VernacRestart -> CT_restart
    | VernacSolve (n, tac) -> CT_solve (CT_int n, xlate_tactic tac)
    | VernacFocus nopt -> CT_focus (xlate_int_opt nopt)
    | VernacUnfocus -> CT_unfocus
  | VernacExtend ("HintRewrite", orient :: formula_list :: base :: t) ->
      let orient = out_gen Extraargs.rawwit_orient orient in
      let formula_list = out_gen (wit_list1 (rawwit_constr)) formula_list in
      let base = out_gen rawwit_pre_ident base in
      let t = match t with
	| [] -> TacId
	| [t] -> out_gen rawwit_tactic t
	| _ -> failwith "" in
      let ct_orient = match orient with
	| true  -> CT_lr
	| false -> CT_rl in
      let f_ne_list = match List.map xlate_constr formula_list with
	  (fst::rest) -> CT_formula_ne_list(fst,rest)
	| _ -> assert false in
      CT_hintrewrite(ct_orient, f_ne_list, CT_ident base, xlate_tactic t)
  | VernacHints (dbnames,h) ->
      let dblist = CT_id_list(List.map (fun x -> CT_ident x) dbnames) in
      (match h with
	| HintsResolve [Some id_name, c] -> (* = Old HintResolve *)
	    CT_hint(xlate_ident id_name, dblist, CT_resolve (xlate_constr c))
	| HintsImmediate [Some id_name, c] -> (* = Old HintImmediate *)
	    CT_hint(xlate_ident id_name, dblist, CT_immediate(xlate_constr c))
	| HintsUnfold [Some id_name, q] -> (* = Old HintUnfold *)
	    CT_hint(xlate_ident id_name, dblist,
              CT_unfold_hint (loc_qualid_to_ct_ID q))
	| HintsConstructors (id_name, q) ->
	    CT_hint(xlate_ident id_name, dblist,
              CT_constructors (loc_qualid_to_ct_ID q))
	| HintsExtern (id_name, n, c, t) ->
	    CT_hint(xlate_ident id_name, dblist,
              CT_extern(CT_int n, xlate_constr c, xlate_tactic t))
     | HintsResolve l -> (* = Old HintsResolve *)
	 let l = List.map
	   (function
	       (None,Coqast.Node(_,"QUALID",l)) -> Astterm.interp_qualid l
	     | _ -> failwith "") l in
	 let n1, names = match List.map tac_qualid_to_ct_ID l with
	     n1 :: names -> n1, names
	   | _  -> failwith "" in
         CT_hints(CT_ident "Resolve",
                  CT_id_ne_list(n1, names),
		  dblist)
     | HintsImmediate l -> (* = Old HintsImmediate *)
	 let l = List.map
	   (function
	       (None,Coqast.Node(_,"QUALID",l)) -> Astterm.interp_qualid l
	     | _ -> failwith "") l in
	 let n1, names = match List.map tac_qualid_to_ct_ID l with
	     n1 :: names -> n1, names
	   | _  -> failwith "" in
        CT_hints(CT_ident "Immediate", 
                 CT_id_ne_list(n1, names),
                 dblist)
     | HintsUnfold l ->  (* = Old HintsUnfold *)
	 let l = List.map
	   (function
	       (None,qid) -> loc_qualid_to_ct_ID qid
	     | _ -> failwith "") l in
	 let n1, names = match l with
	     n1 :: names -> n1, names
	   | _  -> failwith "" in
        CT_hints(CT_ident "Unfold", 
                 CT_id_ne_list(n1, names),
                 dblist))
  | VernacEndProof (true,None) ->
      CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"), ctv_ID_OPT_NONE)
  | VernacEndProof (false,None) ->
      CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Definition"), ctv_ID_OPT_NONE)
  | VernacEndProof (b,Some (s, Some kind)) ->
      CT_save (CT_coerce_THM_to_THM_OPT (xlate_thm kind),
       ctf_ID_OPT_SOME (xlate_ident s))
  | VernacEndProof (b,Some (s,None)) ->
      CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"),
       ctf_ID_OPT_SOME (xlate_ident s))
  | VernacSetOpacity (false, id :: idl) ->
            CT_transparent(CT_id_ne_list(loc_qualid_to_ct_ID id,
                   List.map loc_qualid_to_ct_ID idl))
  | VernacSetOpacity (true, id :: idl)
            -> CT_opaque (CT_id_ne_list(loc_qualid_to_ct_ID id,
                   List.map loc_qualid_to_ct_ID idl))
  | VernacSetOpacity (_, []) -> xlate_error "Shouldn't occur"
  | VernacUndo n -> CT_undo (CT_coerce_INT_to_INT_OPT (CT_int n))
  | VernacShow (ShowGoal nopt) -> CT_show_goal (xlate_int_opt nopt)
  | VernacShow ShowNode -> CT_show_node
  | VernacShow ShowProof -> CT_show_proof
  | VernacShow ShowTree -> CT_show_tree
  | VernacShow ShowProofNames -> CT_show_proofs
  | VernacShow (ShowIntros _|ShowGoalImplicitly _|ShowExistentials|ShowScript)
      -> xlate_error "TODO: Show Intro/Intros/Implicits/Existentials/Script"
  | VernacGo arg -> CT_go (xlate_locn arg)
  | VernacShow ExplainProof l ->
      CT_explain_proof (CT_int_list (List.map (fun x -> CT_int x) l))
  | VernacShow ExplainTree l ->
      CT_explain_prooftree (CT_int_list (List.map (fun x -> CT_int x) l))
  | VernacCheckGuard -> CT_guarded
  | VernacPrint p ->
      (match p with
	  PrintFullContext -> CT_print_all
	| PrintName id -> CT_print_id (loc_qualid_to_ct_ID id)
	| PrintOpaqueName id -> CT_print_opaqueid (loc_qualid_to_ct_ID id)
	| PrintSectionContext id -> CT_print_section (loc_qualid_to_ct_ID id)
	| PrintModules -> CT_print_modules
	| PrintGrammar (phylum, name) -> CT_print_grammar CT_grammar_none
	| PrintHintDb -> CT_print_hint (CT_coerce_NONE_to_ID_OPT CT_none)
	| PrintHintDbName id -> CT_print_hintdb (CT_ident id)
	| PrintHint id ->
	    CT_print_hint (CT_coerce_ID_to_ID_OPT (loc_qualid_to_ct_ID id))
	| PrintLoadPath -> CT_print_loadpath
	| PrintMLLoadPath -> CT_ml_print_path
	| PrintMLModules -> CT_ml_print_modules
	| PrintGraph -> CT_print_graph
	| PrintClasses -> CT_print_classes
	| PrintCoercions -> CT_print_coercions
	| PrintCoercionPaths (id1, id2) -> 
	    CT_print_path (xlate_class id1, xlate_class id2)
	| PrintInspect n -> CT_inspect (CT_int n)
	| PrintUniverses _ -> xlate_error "TODO: Dump Universes"
	| PrintHintGoal -> xlate_error "TODO: Print Hint"
	| PrintLocalContext -> xlate_error "TODO: Print"
	| PrintTables -> xlate_error "TODO: Print Tables"
        | PrintModuleType _ -> xlate_error "TODO: Print Module Type"
        | PrintModule _ -> xlate_error "TODO: Print Module")
  | VernacBeginSection id ->
      CT_coerce_SECTION_BEGIN_to_COMMAND (CT_section (xlate_ident id))
  | VernacEndSegment id -> CT_section_end (xlate_ident id)
  | VernacStartTheoremProof (k, s, ([],c), _, _) ->
      CT_coerce_THEOREM_GOAL_to_COMMAND(
	CT_theorem_goal (CT_coerce_THM_to_DEFN_OR_THM (xlate_thm k), xlate_ident s,xlate_constr c))
  | VernacStartTheoremProof (k, s, (bl,c), _, _) -> 
      xlate_error "TODO: VernacStartTheoremProof"
  | VernacSuspend -> CT_suspend
  | VernacResume idopt -> CT_resume (xlate_ident_opt idopt)
  | VernacDefinition (k,s,ProveBody (bl,typ),_) ->
      if bl <> [] then xlate_error "TODO: Def bindings";
      CT_coerce_THEOREM_GOAL_to_COMMAND(
	CT_theorem_goal (CT_coerce_DEFN_to_DEFN_OR_THM (xlate_defn k), xlate_ident s,xlate_constr typ))
  | VernacDefinition (kind,s,DefineBody(bl,red_option,c,typ_opt),_) ->
      if bl <> [] then xlate_error "TODO: Def bindings";
      CT_definition
	(xlate_defn kind, xlate_ident s, 
	   cvt_optional_eval_for_definition c red_option,
           xlate_constr_opt typ_opt)
  | VernacAssumption (kind, b) ->
      let b = List.map snd b in (* TODO: handle possible coercions *)
      CT_variable (xlate_var kind, cvt_vernac_binders b)
  | VernacCheckMayEval (None, numopt, c) ->
      CT_check (xlate_constr c)
  | VernacSearch (s,x) ->
      (match s with
	| SearchPattern c ->
	    CT_search_pattern(xlate_constr c, xlate_search_restr x)
	| SearchHead id ->
	    CT_search(loc_qualid_to_ct_ID id, xlate_search_restr x)
	| SearchRewrite c -> xlate_error "TODO: SearchRewrite")

  | (*Record from tactics/Record.v *)
    VernacRecord 
      ((add_coercion, s), binders, c1, rec_constructor_or_none, field_list) ->
      let record_constructor = xlate_ident_opt rec_constructor_or_none in
      CT_record
       ((if add_coercion then CT_coercion_atm else
          CT_coerce_NONE_to_COERCION_OPT(CT_none)),
        xlate_ident s, cvt_vernac_binders binders, xlate_sort c1, record_constructor,
         build_record_field_list field_list)

(* TODO
     | (*Inversions from tactics/Inv.v *)
       "MakeSemiInversionLemmaFromHyp",
         ((Varg_int n) :: ((Varg_ident id1) :: ((Varg_ident id2) :: []))) ->
      CT_derive_inversion
       (CT_inv_regular, CT_coerce_INT_to_INT_OPT n, id1, id2)
     | "MakeInversionLemmaFromHyp",
         ((Varg_int n) :: ((Varg_ident id1) :: ((Varg_ident id2) :: []))) ->
      CT_derive_inversion
       (CT_inv_clear,
       CT_coerce_INT_to_INT_OPT n, id1, id2)
     | "MakeSemiInversionLemma",
         ((Varg_ident id) :: (c :: ((Varg_sorttype sort) :: []))) ->
      CT_derive_inversion_with
       (CT_inv_regular, id, coerce_iVARG_to_FORMULA c, sort)
     | "MakeInversionLemma",
         ((Varg_ident id) :: (c :: ((Varg_sorttype sort) :: []))) ->
      CT_derive_inversion_with
       (CT_inv_clear, id,
       coerce_iVARG_to_FORMULA c, sort)
     | "MakeDependentSemiInversionLemma",
         ((Varg_ident id) :: (c :: ((Varg_sorttype sort) :: []))) ->
      CT_derive_depinversion
       (CT_inv_regular, id, coerce_iVARG_to_FORMULA c, sort)
     | "MakeDependentInversionLemma",
         ((Varg_ident id) :: (c :: ((Varg_sorttype sort) :: []))) ->
      CT_derive_depinversion
       (CT_inv_clear, id, coerce_iVARG_to_FORMULA c, sort)
*)
   | VernacInductive (isind, lmi) ->
      let co_or_ind = if isind then "Inductive" else "CoInductive" in
      let strip_mutind (s, parameters, c, constructors) =
           CT_ind_spec
            (xlate_ident s, cvt_vernac_binders parameters, xlate_constr c,
             build_constructors constructors) in
        CT_mind_decl
	  (CT_co_ind co_or_ind, CT_ind_spec_list (List.map strip_mutind lmi))
   | VernacFixpoint [] -> xlate_error "mutual recursive"
   | VernacFixpoint (lm :: lmi) ->
      let strip_mutrec (fid, bl, arf, ardef) =
	match cvt_vernac_binders bl with
	  | CT_binder_list (b :: bl) ->
	      CT_fix_rec (xlate_ident fid, CT_binder_ne_list (b, bl),
	        xlate_constr arf, xlate_constr ardef)
          | _ -> xlate_error "mutual recursive" in
        CT_fix_decl
	  (CT_fix_rec_list (strip_mutrec lm, List.map strip_mutrec lmi))
   | VernacCoFixpoint [] -> xlate_error "mutual corecursive"
   | VernacCoFixpoint (lm :: lmi) ->
      let strip_mutcorec (fid, arf, ardef) =
	CT_cofix_rec (xlate_ident fid, xlate_constr arf, xlate_constr ardef) in
        CT_cofix_decl
	  (CT_cofix_rec_list (strip_mutcorec lm, List.map strip_mutcorec lmi))
   | VernacScheme [] -> xlate_error "induction scheme"
   | VernacScheme (lm :: lmi) ->
      let strip_ind (id, depstr, inde, sort) =
           CT_scheme_spec
            (xlate_ident id, xlate_dep depstr, 
	    CT_coerce_ID_to_FORMULA (loc_qualid_to_ct_ID inde),
	     xlate_sort sort) in
        CT_ind_scheme
	  (CT_scheme_spec_list (strip_ind lm, List.map strip_ind lmi))
   | VernacSyntacticDefinition (id, c, nopt) ->
         CT_syntax_macro (xlate_ident id, xlate_constr c, xlate_int_opt nopt)
   | VernacRequire (None, spec, lid) -> xlate_error "TODO: Read Module"
   | VernacRequire (Some impexp, spec, [id]) ->
      let ct_impexp, ct_spec = get_require_flags impexp spec in
      CT_require (ct_impexp, ct_spec, loc_qualid_to_ct_ID id,
        CT_coerce_NONE_to_STRING_OPT CT_none)
   | VernacRequire (_,_,([]|_::_::_)) ->
       xlate_error "TODO: general form of future Require"
   | VernacRequireFrom (impexp, spec, id, filename) ->
      let ct_impexp, ct_spec = get_require_flags impexp spec in
      CT_require
       (ct_impexp, ct_spec, xlate_ident id, 
         CT_coerce_STRING_to_STRING_OPT (CT_string filename))

   | VernacSyntax (phylum, l) -> xlate_error "SYNTAX not implemented"
       (*Two versions of the syntax node with and without the binder list. *)
       (*Need to update the metal file and ascent.mli first! 
         	| ("SYNTAX", [Varg_ident phy; Varg_ident s; spatarg; unparg; blist]) ->
         	        (syntaxop phy s spatarg unparg blist)
         	| ("SYNTAX", [Varg_ident phy; Varg_ident s; spatarg; unparg]) ->
         	        (syntaxop phy s spatarg unparg 
         coerce_ID_OPT_to_FORMULA_OPT(CT_coerce_NONE_to_ID_OPT(CT_none)))*)
   | VernacOpenScope sc -> xlate_error "TODO: open scope"

   | VernacArgumentsScope _ -> xlate_error "TODO: Arguments Scope"

   | VernacDelimiters _ -> xlate_error "TODO: Delimiters"

   | VernacNotation _ -> xlate_error "TODO: Notation"

   | VernacInfix (str_assoc, n, str, id, sc) ->
      (* TODO: handle scopes *)
      CT_infix (
       (match str_assoc with
        | Some Gramext.LeftA -> CT_lefta
        | Some Gramext.RightA -> CT_righta
        | Some Gramext.NonA -> CT_nona
        | None -> CT_coerce_NONE_to_ASSOC CT_none),
       CT_int n, CT_string str, loc_qualid_to_ct_ID id)
   | VernacGrammar _ -> xlate_error "GRAMMAR not implemented"
   | VernacCoercion (s, id1, id2, id3) ->
      let id_opt = CT_coerce_NONE_to_IDENTITY_OPT CT_none in
      let local_opt =
       match s with
       (* Cannot decide whether it is a global or a Local but at toplevel *)
       | Libnames.NeverDischarge -> CT_coerce_NONE_to_LOCAL_OPT CT_none
       | Libnames.DischargeAt _ -> CT_local
       | Libnames.NotDeclare -> assert false in
      CT_coercion (local_opt, id_opt, loc_qualid_to_ct_ID id1,
        xlate_class id2, xlate_class id3)

   | VernacIdentityCoercion (s, id1, id2, id3) ->
      let id_opt = CT_identity in
      let local_opt =
       match s with
       (* Cannot decide whether it is a global or a Local but at toplevel *)
       | Libnames.NeverDischarge -> CT_coerce_NONE_to_LOCAL_OPT CT_none
       | Libnames.DischargeAt _ -> CT_local 
       | Libnames.NotDeclare -> assert false in
      CT_coercion (local_opt, id_opt, xlate_ident id1,
        xlate_class id2, xlate_class id3)
  | VernacResetName id -> CT_reset (xlate_ident id)
  | VernacResetInitial -> CT_restore_state (CT_ident "Initial")
  | VernacExtend (s, l) ->
      CT_user_vernac
       (CT_ident s, CT_varg_list (List.map coerce_genarg_to_VARG l))
  | VernacDebug b -> xlate_error "TODO: Debug On/Off"

  | VernacList l -> xlate_error "Not treated here"
  | (VernacLocate _|VernacGlobalCheck _|VernacPrintOption _|
     VernacMemOption (_, _)|VernacRemoveOption (_, _)|VernacAddOption (_, _)|
     VernacSetOption (_, _)|VernacUnsetOption _|VernacDeclareImplicits (_, _)|
     VernacHintDestruct (_, _, _, _, _)|VernacBack _|VernacRestoreState _|
     VernacWriteState _|VernacSolveExistential (_, _)|VernacCanonical _|
     VernacImport (_, _)|VernacExactProof _|VernacDistfix (_, _, _, _, _)|
     VernacTacticGrammar _|VernacVar _|VernacTime _|VernacNop|VernacComments _)
    -> xlate_error "TODO: vernac"

  (* Modules and Module Types *)
  | VernacDeclareModule _ -> xlate_error "TODO: vernac"
  | VernacDeclareModuleType _ -> xlate_error "TODO: vernac"

let xlate_vernac_list =
 function
   | VernacList (v::l) ->
       CT_command_list
         (xlate_vernac (snd v), List.map (fun (_,x) -> xlate_vernac x) l)
   | VernacList [] -> xlate_error "xlate_command_list"
   | _ -> xlate_error "Not a list of commands";;