aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/interface/showproof.ml
blob: 5918a8b7eeefd37aafe93852b22730f7204b91f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
(*
#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
open Coqast;;
*)
open Environ
open Evd
open Names
open Nameops
open Libnames
open Term
open Termops
open Util
open Proof_type
open Coqast
open Pfedit
open Translate
open Term
open Reductionops
open Clenv
open Typing
open Inductive
open Inductiveops
open Vernacinterp
open Declarations
open Showproof_ct
open Proof_trees
open Sign
open Pp
open Printer
open Rawterm
open Tacexpr
open Genarg
(*****************************************************************************)
(*
   Arbre de preuve maison:
   
*)

(* hypotheses *)

type nhyp = {hyp_name : identifier;
             hyp_type : Term.constr;
             hyp_full_type: Term.constr}
;;

type ntactic = tactic_expr
;;

type nproof =
    Notproved
  | Proof of ntactic * (ntree list)

and ngoal=
     {newhyp : nhyp list;
      t_concl : Term.constr;
      t_full_concl: Term.constr;
      t_full_env: Sign.named_context}
and ntree=
      {t_info:string;
	t_goal:ngoal;
       	t_proof : nproof}
;;


let hyps {t_info=info;
	 t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	 t_proof=p} = lh
;;

let concl {t_info=info;
	 t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	 t_proof=p} = g
;;

let proof {t_info=info;
	 t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	 t_proof=p} = p
;;
let g_env {t_info=info;
	 t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	 t_proof=p} = ge
;;
let sub_ntrees t =
  match (proof t) with
    Notproved -> []
  | Proof (_,l) -> l
;;

let tactic t =
  match (proof t) with
    Notproved -> failwith "no tactic applied"
  | Proof (t,_) -> t
;;


(* 
un arbre est clos s'il ne contient pas de sous-but non prouves,
ou bien s'il a un cousin gauche qui n'est pas clos 
ce qui fait qu'on a au plus un sous-but non clos, le premier sous-but.
*)
let update_closed nt =
  let found_not_closed=ref false in
  let rec update {t_info=b; t_goal=g; t_proof =p} =
    if !found_not_closed
    then  {t_info="to_prove"; t_goal=g; t_proof =p}
    else
      match p with
      	Notproved -> found_not_closed:=true;
	  {t_info="not_proved"; t_goal=g; t_proof =p}
      | Proof(tac,lt) ->
	  let lt1=List.map update lt in
	  let b=ref "proved" in
	  (List.iter
	     (fun x ->
	       if x.t_info ="not_proved" then b:="not_proved") lt1;
	   {t_info=(!b);
	     t_goal=g;
             t_proof=Proof(tac,lt1)})
  in update nt
    ;;
    
      
(*
    type complet avec les hypotheses.
*)

let long_type_hyp lh t=
   let t=ref t in
   List.iter (fun (n,th) ->
         let ni = match n with Name ni -> ni | _ -> assert false in
         t:= mkProd(n,th,subst_term (mkVar ni) !t))
       (List.rev lh);
   !t
;;

(* let long_type_hyp x y = y;; *)

(* Expansion des tactikelles *)

let seq_to_lnhyp sign sign' cl =
      let lh= ref (List.map (fun (x,c,t) -> (Name x, t)) sign) in
      let nh=List.map (fun (id,c,ty) -> 
             {hyp_name=id;
              hyp_type=ty;
              hyp_full_type=
                let res= long_type_hyp !lh ty in
                lh:=(!lh)@[(Name id,ty)];
                res})
              sign'
      in
      {newhyp=nh;
       t_concl=cl;
       t_full_concl=long_type_hyp !lh cl;
       t_full_env = sign@sign'}
;;


let rule_is_complex r =
   match r with
      Tactic (TacArg (Tacexp t),_) -> true  
   |  Tactic (TacAtom (_,TacAuto _), _) -> true
   |  Tactic (TacAtom (_,TacSymmetry _), _) -> true 
   |_ -> false
;;

let ast_of_constr = Termast.ast_of_constr true (Global.env()) ;;

(*
let rule_to_ntactic r =
   let rast =
     (match r with
       Tactic (s,l) ->
	 Ast.ope (s,(List.map ast_of_cvt_arg l))
     | Prim (Refine h) ->
	 Ast.ope ("Exact",
		  [Node ((0,0), "COMMAND", [ast_of_constr h])])
     | _ -> Ast.ope ("Intros",[])) in
   if rule_is_complex r
   then (match rast with
           Node(_,_,[Node(_,_,[Node(_,_,x)])]) ->x
          | _ -> assert false)

   else [rast ]
;;
*)
let rule_to_ntactic r =
   let rt =
     (match r with
       Tactic (t,_) -> t
     | Prim (Refine h) -> TacAtom (dummy_loc,TacExact h)
     | _ -> TacAtom (dummy_loc, TacIntroPattern [])) in
   if rule_is_complex r
   then (match rt with
           TacArg (Tacexp _) as t -> t
          | _ -> assert false)

   else rt
;;

(*
let term_of_command x =
  match x with
    Node(_,_,y::_) -> y
  | _ -> x
;;
*)

(* Attribue les preuves de la liste l aux sous-buts non-prouvés de nt  *)


let fill_unproved nt l =
  let lnt = ref l in
  let rec fill nt =
    let {t_goal=g;t_proof=p}=nt in
       match p with
        Notproved -> let p=List.hd (!lnt) in
                     lnt:=List.tl (!lnt);
                     {t_info="to_prove";t_goal=g;t_proof=p}
       |Proof(tac,lt) ->
          {t_info="to_prove";t_goal=g;
           t_proof=Proof(tac,List.map fill lt)}
  in fill nt
;;
(* Differences entre signatures *)

let new_sign osign sign =
    let res=ref [] in
    List.iter (fun (id,c,ty) ->
		   try (let  (_,_,ty1)= (lookup_named id osign) in
			())
		   with Not_found -> res:=(id,c,ty)::(!res))
              sign;
    !res
;;

let old_sign osign sign =
    let res=ref [] in
    List.iter (fun (id,c,ty) ->
		   try (let (_,_,ty1) = (lookup_named id osign) in
			if ty1 = ty then res:=(id,c,ty)::(!res))
		   with Not_found -> ())
              sign;
    !res
;;

(* convertit l'arbre de preuve courant en ntree *)
let  to_nproof sigma osign pf =
  let rec to_nproof_rec sigma osign pf =
    let {evar_hyps=sign;evar_concl=cl} = pf.goal in
    let nsign = new_sign osign sign in 
    let oldsign = old_sign osign sign in 
    match pf.ref with
      
      None -> {t_info="to_prove";
	      	t_goal=(seq_to_lnhyp oldsign nsign cl);
              	t_proof=Notproved}
    | Some(r,spfl) ->
      	if rule_is_complex r
      	then (
	  let p1= to_nproof_rec sigma sign (subproof_of_proof pf) in
          let ntree= fill_unproved p1 
              (List.map (fun x -> (to_nproof_rec sigma sign x).t_proof)
		 spfl) in
	  (match r with
	    Tactic (TacAtom (_, TacAuto _),_) ->
	      if spfl=[]
	      then
	      	{t_info="to_prove";
	    	  t_goal= {newhyp=[];
			    t_concl=concl ntree;
			    t_full_concl=ntree.t_goal.t_full_concl;
			    t_full_env=ntree.t_goal.t_full_env};
		  t_proof= Proof (TacAtom (dummy_loc,TacExtend (dummy_loc,"InfoAuto",[])), [ntree])}
	      else ntree
	  | _ -> ntree))
      	else
	  {t_info="to_prove";
	    t_goal=(seq_to_lnhyp oldsign nsign cl);
       	    t_proof=(Proof (rule_to_ntactic r,
			      List.map (fun x -> to_nproof_rec sigma sign x) spfl))}
  in update_closed (to_nproof_rec sigma osign pf)
    ;;

(* 
  recupere l'arbre de preuve courant.
*)

let get_nproof () =
  to_nproof (Global.env()) []
            (Tacmach.proof_of_pftreestate (get_pftreestate()))
;;

    
(*****************************************************************************)
(*
   Pprinter
*)

let pr_void () = sphs "";;

let list_rem l = match l with [] -> [] |x::l1->l1;;

(* liste de chaines *)
let prls l = 
   let res = ref (sps (List.hd l)) in
   List.iter (fun s -> 
     res:= sphv [ !res; spb; sps s]) (list_rem l);
   !res
;;

let prphrases f l = 
   spv (List.map (fun s -> sphv [f s; sps ","]) l)
;;

(* indentation *)
let spi = spnb 3;;

(* en colonne *)
let prl f l = 
   if l=[] then spe else spv (List.map f l);;
(*en colonne,  avec indentation *)
let prli f l =  
   if l=[] then spe else sph [spi; spv (List.map f l)];;

(* 
  Langues.
*)

let rand l =
  List.nth l (Random.int (List.length l))
;;

type natural_languages = French | English;;
let natural_language = ref French;;

(*****************************************************************************)
(*
   Les liens html pour proof-by-pointing
*)

(* le path du but en cours. *)

let path=ref[1];;

let ftag_apply =ref (fun (n:string) t -> spt t);;

let ftag_case =ref (fun n -> sps n);;

let ftag_elim =ref (fun n ->  sps n);;

let ftag_hypt =ref (fun h t -> sphypt (translate_path !path) h t);;

let ftag_hyp =ref (fun h t -> sphyp (translate_path !path) h t);;

let ftag_uselemma =ref (fun h t ->
  let intro = match !natural_language with
    French -> "par"
  | English -> "by"
  in
  spuselemma intro h t);;

let ftag_toprove =ref (fun t -> sptoprove (translate_path !path) t);;

let tag_apply = !ftag_apply;;

let tag_case = !ftag_case;;

let tag_elim = !ftag_elim;;

let tag_uselemma = !ftag_uselemma;;

let tag_hyp = !ftag_hyp;;

let tag_hypt = !ftag_hypt;;

let tag_toprove = !ftag_toprove;;

(*****************************************************************************)

(* pluriel *)
let txtn n s =
  if n=1 then s
  else match s with
    |"un" -> "des"
    |"a" -> ""
    |"an" -> ""
    |"une" -> "des"
    |"Soit" -> "Soient"
    |"Let" -> "Let"
    | s -> s^"s"
;;

let _et () =  match !natural_language with
    French -> sps "et"
| English -> sps "and"
;;

let name_count = ref 0;;
let new_name () =
  name_count:=(!name_count)+1;
  string_of_int !name_count
;;

let enumerate f ln =
  match ln with
    [] -> []
  | [x] -> [f x]
  |ln -> 
  let rec enum_rec f ln = 
     (match ln with 
       [x;y] -> [f x; spb; sph [_et ();spb;f y]]
      |x::l -> [sph [(f x);sps ","];spb]@(enum_rec f l)
      | _ -> assert false)
  in enum_rec f ln
;;


let constr_of_ast = Constrintern.interp_constr Evd.empty (Global.env());;

(*
let sp_tac tac =
   try spt (constr_of_ast (term_of_command tac))
   with _ -> (* let Node(_,t,_) = tac in *)
             spe (* sps ("error in sp_tac " ^ t) *)
;;
*)
let sp_tac tac = failwith "TODO"

let soit_A_une_proposition nh ln t=  match !natural_language with
    French ->
      sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
            @[spb; prls [txtn nh "une";txtn nh "proposition"]])
| English ->
      sphv ([sps "Let";spb]@(enumerate (fun x -> tag_hyp x t) ln)
            @[spb; prls ["be"; txtn nh "a";txtn nh "proposition"]])
;;

let on_a ()=  match !natural_language with
  French -> rand ["on a "]
| English ->rand ["we have "]
;;

let bon_a ()=  match !natural_language with
  French -> rand ["On a "]
| English ->rand ["We have "]
;;

let soit_X_un_element_de_T nh ln t =  match !natural_language with
  French ->
    sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
          @[spb; prls [txtn nh "un";txtn nh "élément";"de"]]
          @[spb; spt t])
| English ->
    sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
          @[spb; prls ["be";txtn nh "an";txtn nh "element";"of"]]
          @[spb; spt t])
;;

let soit_F_une_fonction_de_type_T nh ln t =  match !natural_language with
  French ->
    sphv ([sps (txtn nh "Soit");spb]@(enumerate (fun x -> tag_hyp x t) ln)
          @[spb; prls [txtn nh "une";txtn nh "fonction";"de";"type"]]
          @[spb; spt t])
| English ->
    sphv ([sps (txtn nh "Let");spb]@(enumerate (fun x -> tag_hyp x t) ln)
          @[spb; prls ["be";txtn nh "a";txtn nh "function";"of";"type"]]
          @[spb; spt t])
;;


let telle_que nh =  match !natural_language with
    French -> [prls [" ";txtn nh "telle";"que";" "]]
| English -> [prls [" "; "such";"that";" "]]
;;

let tel_que nh =  match !natural_language with
    French -> [prls [" ";txtn nh "tel";"que";" "]]
| English -> [prls [" ";"such";"that";" "]]
;;

let supposons () =  match !natural_language with
    French -> "Supposons "
|  English -> "Suppose "
;;

let cas () =  match !natural_language with
    French -> "Cas"
|  English -> "Case"
;;

let donnons_une_proposition () =  match !natural_language with
    French -> sph[ (prls ["Donnons";"une";"proposition"])]
|  English -> sph[ (prls ["Let us give";"a";"proposition"])]
;;

let montrons g =  match !natural_language with
    French -> sph[ sps (rand ["Prouvons";"Montrons";"Démontrons"]);
		   spb; spt g; sps ". "]
|  English -> sph[ sps (rand ["Let us";"Now"]);spb;
		   sps (rand ["prove";"show"]);
		   spb; spt g; sps ". "]
;;

let calculons_un_element_de g =  match !natural_language with
    French -> sph[ (prls ["Calculons";"un";"élément";"de"]);
		   spb; spt g; sps ". "]
|  English -> sph[ (prls ["Let us";"compute";"an";"element";"of"]);
		   spb; spt g; sps ". "]
;;

let calculons_une_fonction_de_type g =  match !natural_language with
    French -> sphv [ (prls ["Calculons";"une";"fonction";"de";"type"]);
                spb; spt g; sps ". "]
|  English -> sphv [ (prls ["Let";"us";"compute";"a";"function";"of";"type"]);
                spb; spt g; sps ". "];;

let en_simplifiant_on_obtient g =  match !natural_language with
    French ->
      sphv [ (prls [rand ["Après simplification,"; "En simplifiant,"];
		     rand ["on doit";"il reste à"];
		     rand ["prouver";"montrer";"démontrer"]]);
		     spb; spt g; sps ". "]
|  English ->
      sphv [ (prls [rand ["After simplification,"; "Simplifying,"];
		     rand ["we must";"it remains to"];
		     rand ["prove";"show"]]);
		     spb; spt g; sps ". "] ;;

let on_obtient g =  match !natural_language with
  French -> sph[ (prls [rand ["on doit";"il reste à"];
			 rand ["prouver";"montrer";"démontrer"]]);
                 spb; spt g; sps ". "]
|  English ->sph[ (prls [rand ["we must";"it remains to"];
		     rand ["prove";"show"]]);
                  spb; spt g; sps ". "]
;;

let reste_a_montrer g =  match !natural_language with
    French -> sph[ (prls ["Reste";"à";
			   rand ["prouver";"montrer";"démontrer"]]);
                spb; spt g; sps ". "]
|  English -> sph[ (prls ["It remains";"to";
			   rand ["prove";"show"]]);
                spb; spt g; sps ". "] 
;;

let discutons_avec_A type_arg  =  match !natural_language with
    French -> sphv [sps "Discutons"; spb; sps "avec"; spb;
				   spt type_arg; sps ":"] 
|  English -> sphv [sps "Let us discuss"; spb; sps "with"; spb;
				   spt type_arg; sps ":"] 
;;

let utilisons_A arg1  =  match !natural_language with
    French -> sphv [sps (rand ["Utilisons";"Avec";"A l'aide de"]);
		     spb; spt arg1; sps ":"] 
|  English -> sphv [sps (rand ["Let us use";"With";"With the help of"]);
		     spb; spt arg1; sps ":"] 
;;

let selon_les_valeurs_de_A arg1  =  match !natural_language with
    French -> sphv [  (prls ["Selon";"les";"valeurs";"de"]);
                      spb; spt arg1; sps ":"] 
|  English -> sphv [  (prls ["According";"values";"of"]);
                      spb; spt arg1; sps ":"] 
;;

let de_A_on_a arg1  =  match !natural_language with
    French -> sphv [  sps (rand ["De";"Avec";"Grâce à"]); spb; spt arg1; spb;
		      sps (rand ["on a:";"on déduit:";"on obtient:"])]
|  English -> sphv [  sps (rand ["From";"With";"Thanks to"]); spb;
		     spt arg1; spb;
		      sps (rand ["we have:";"we deduce:";"we obtain:"])]
;;


let procedons_par_recurrence_sur_A arg1  =  match !natural_language with
    French ->  sphv [  (prls ["Procédons";"par";"récurrence";"sur"]);
			  spb; spt arg1; sps ":"]
|  English -> sphv [  (prls ["By";"induction";"on"]);
			  spb; spt arg1; sps ":"]
;;


let calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A 
  nfun tfun narg =  match !natural_language with
    French ->  sphv [  
                    sphv [ prls ["Calculons";"la";"fonction"];
                     spb; sps (string_of_id nfun);spb;
                     prls ["de";"type"];
                     spb; spt tfun;spb;
                     prls ["par";"récurrence";"sur";"son";"argument"];
                     spb; sps (string_of_int narg); sps ":"]
                 ]
|  English ->  sphv [  
                    sphv [ prls ["Let us compute";"the";"function"];
                     spb; sps (string_of_id nfun);spb;
                     prls ["of";"type"];
                     spb; spt tfun;spb;
                     prls ["by";"induction";"on";"its";"argument"];
                     spb; sps (string_of_int narg); sps ":"]
                 ]

;;
let pour_montrer_G_la_valeur_recherchee_est_A g arg1  =
  match !natural_language with
    French ->  sph [sps "Pour";spb;sps "montrer"; spt g; spb;
		     sps ","; spb; sps "choisissons";spb;
		     spt arg1;sps ". " ]
|  English ->  sph [sps "In order to";spb;sps "show"; spt g; spb;
		     sps ","; spb; sps "let us choose";spb;
		     spt arg1;sps ". " ]
;;

let on_se_sert_de_A   arg1  =  match !natural_language with
    French ->  sph [sps "On se sert de";spb ;spt arg1;sps ":" ]
|  English ->  sph [sps "We use";spb ;spt arg1;sps ":" ]
;;


let d_ou_A g  =  match !natural_language with
    French ->  sph [spi; sps "d'où";spb ;spt g;sps ". " ]
|  English -> sph [spi; sps "then";spb ;spt g;sps ". " ]
;;


let coq_le_demontre_seul ()  =  match !natural_language with
    French ->   rand [prls ["Coq";"le";"démontre"; "seul."];
		       sps "Fastoche.";
		     sps "Trop cool"]
|  English -> 	rand [prls ["Coq";"shows";"it"; "alone."];
		       sps "Fingers in the nose."]	      
;;

let de_A_on_deduit_donc_B arg g  =  match !natural_language with
    French -> sph
             [  sps "De"; spb; spt arg; spb; sps "on";spb;
                sps "déduit";spb; sps "donc";spb;  spt g ]
|  English -> sph
             [  sps "From"; spb; spt arg; spb; sps "we";spb;
                sps "deduce";spb; sps "then";spb;  spt g ]
;;

let _A_est_immediat_par_B g arg  =  match !natural_language with
    French -> sph [  spt g;  spb; (prls ["est";"immédiat";"par"]);
                     spb;  spt arg ] 
|  English -> sph [  spt g;  spb; (prls ["is";"immediate";"from"]);
                     spb;  spt arg ] 
;;

let le_resultat_est arg  =  match !natural_language with
    French -> sph [  (prls ["le";"résultat";"est"]);
                    spb; spt arg ] 
|  English -> sph [  (prls ["the";"result";"is"]);
                    spb; spt arg ];;

let on_applique_la_tactique tactic tac =  match !natural_language with
  French -> sphv 
      [ sps "on applique";spb;sps "la tactique"; spb;tactic;spb;tac]
|  English -> sphv 
      [ sps "we apply";spb;sps "the tactic"; spb;tactic;spb;tac]
;;

let de_A_il_vient_B arg g  =  match !natural_language with
    French -> sph
             [  sps "De"; spb; spt arg; spb; 
               sps "il";spb; sps "vient";spb; spt g; sps ". " ] 
|  English -> sph
             [  sps "From"; spb; spt arg; spb; 
               sps "it";spb; sps "comes";spb; spt g; sps ". " ] 
;;

let ce_qui_est_trivial ()  =  match !natural_language with
    French -> sps "Trivial."
|  English -> sps "Trivial."
;;

let en_utilisant_l_egalite_A arg  =  match !natural_language with
    French -> sphv [  sps "En"; spb;sps "utilisant"; spb;
                   sps "l'egalite"; spb; spt arg; sps ","
                  ]
|  English -> sphv [  sps "Using"; spb;
                   sps "the equality"; spb; spt arg; sps ","
                  ]
;;

let simplifions_H_T hyp thyp =  match !natural_language with
    French -> sphv [sps"En simplifiant";spb;sps hyp;spb;sps "on obtient:";
		     spb;spt thyp;sps "."]
|  English ->  sphv [sps"Simplifying";spb;sps hyp;spb;sps "we get:";
		     spb;spt thyp;sps "."]
;;

let grace_a_A_il_suffit_de_montrer_LA arg lg=
  match !natural_language with
    French -> sphv ([sps (rand ["Grâce à";"Avec";"A l'aide de"]);spb;
		      spt arg;sps ",";spb;
		     sps "il suffit";spb; sps "de"; spb;
		      sps (rand["prouver";"montrer";"démontrer"]); spb]
		     @[spv (enumerate (fun x->x) lg)])
|  English -> sphv ([sps (rand ["Thanks to";"With"]);spb;
		      spt arg;sps ",";spb;
		     sps "it suffices";spb; sps "to"; spb;
		      sps (rand["prove";"show"]); spb]
		     @[spv (enumerate (fun x->x) lg)])
;;
let reste_a_montrer_LA lg=
  match !natural_language with
    French -> sphv ([ sps "Il reste";spb; sps "à"; spb;
		      sps (rand["prouver";"montrer";"démontrer"]); spb]
		     @[spv (enumerate (fun x->x) lg)])
|  English -> sphv ([ sps "It remains";spb; sps "to"; spb;
		      sps (rand["prove";"show"]); spb]
		     @[spv (enumerate (fun x->x) lg)])
;;
(*****************************************************************************)
(*
  Traduction des hypothèses.
*)

type n_sort=
      Nprop
    | Nformula
    | Ntype
    | Nfunction
;;

   
let sort_of_type t ts =
   let t=(strip_outer_cast t) in
   if is_Prop t
   then Nprop
   else 
       match ts with
         Prop(Null) -> Nformula
        |_ -> (match (kind_of_term t) with
                Prod(_,_,_) -> Nfunction
               |_ -> Ntype)
;;

let adrel (x,t) e =
    match x with 
      Name(xid) -> Environ.push_rel (x,None,t) e
    | Anonymous -> Environ.push_rel (x,None,t) e

let rec nsortrec vl x = 
     match (kind_of_term x) with
     Prod(n,t,c)->
        let vl = (adrel (n,t) vl) in nsortrec vl c
   | Lambda(n,t,c) ->
        let vl = (adrel (n,t) vl) in nsortrec vl c
   | App(f,args) -> nsortrec vl f
   | Sort(Prop(Null)) -> Prop(Null)
   | Sort(c) -> c
   | Ind(ind) ->
          let (mib,mip) = lookup_mind_specif vl ind in
          mip.mind_sort
   | Construct(c) ->
          nsortrec vl (mkInd (inductive_of_constructor c))
   | Case(_,x,t,a) 
        -> nsortrec vl x
   | Cast(x,t)-> nsortrec vl t
   | Const c  -> nsortrec vl (lookup_constant c vl).const_type
   | _ -> nsortrec vl (type_of vl Evd.empty x)
;;
let nsort x =
    nsortrec  (Global.env()) (strip_outer_cast x)
;;

let sort_of_hyp h = 
  (sort_of_type h.hyp_type (nsort h.hyp_full_type))
;;

(* grouper les hypotheses successives de meme type, ou logiques.
   donne une liste de liste *)
let rec group_lhyp lh =
    match lh with
     [] -> []
    |[h] -> [[h]]
    |h::lh ->
      match group_lhyp lh with
       (h1::lh1)::lh2 -> 
        if h.hyp_type=h1.hyp_type
          || ((sort_of_hyp h)=(sort_of_hyp h1) && (sort_of_hyp h1)=Nformula)
        then (h::(h1::lh1))::lh2
        else [h]::((h1::lh1)::lh2)
     |_-> assert false
;;
	
(* ln noms des hypotheses, lt leurs types *)
let natural_ghyp (sort,ln,lt) intro =
  let t=List.hd lt in
  let nh=List.length ln in
  let ns=List.hd ln in
  match sort with
    Nprop -> soit_A_une_proposition nh ln t
  | Ntype -> soit_X_un_element_de_T nh ln t
  | Nfunction -> soit_F_une_fonction_de_type_T nh ln t
  | Nformula -> 
      sphv ((sps intro)::(enumerate (fun (n,t) -> tag_hypt n t)
			    (List.combine ln lt)))
;;

(* Cas d'une hypothese *)
let natural_hyp h = 
   let ns= string_of_id h.hyp_name in
   let t=h.hyp_type in
   let ts= (nsort h.hyp_full_type) in
   natural_ghyp ((sort_of_type t ts),[ns],[t]) (supposons ())
;;

let rec pr_ghyp lh intro=
     match lh with
       [] -> []
     | [(sort,ln,t)]->
         (match sort with
           Nformula -> [natural_ghyp(sort,ln,t) intro; sps ". "]
         | _ -> [natural_ghyp(sort,ln,t) ""; sps ". "])
     | (sort,ln,t)::lh  ->
       let hp= 
        ([natural_ghyp(sort,ln,t) intro]
         @(match lh with
           [] -> [sps ". "]
          |(sort1,ln1,t1)::lh1  ->
             match sort1 with
               Nformula -> 
                 (let nh=List.length ln in
                     match sort with
                   Nprop -> telle_que nh 
                  |Nfunction -> telle_que nh 
                  |Ntype -> tel_que nh 
                  |Nformula -> [sps ". "])
             | _ -> [sps ". "])) in
        (sphv hp)::(pr_ghyp lh "")
;;

(* traduction d'une liste d'hypotheses groupees. *)
let prnatural_ghyp llh intro=
  if llh=[]
  then spe
  else
    sphv (pr_ghyp (List.map
		     (fun lh ->
		       let h=(List.hd lh) in
		       let sh = sort_of_hyp h in
		       let lhname = (List.map (fun h ->
			 string_of_id h.hyp_name) lh) in
		       let lhtype = (List.map (fun h -> h.hyp_type) lh) in
		       (sh,lhname,lhtype))
		     llh) intro)
;;


(*****************************************************************************)
(*
    Liste des hypotheses.
*)
type type_info_subgoals_hyp=
    All_subgoals_hyp
  | Reduce_hyp
  | No_subgoals_hyp
  | Case_subgoals_hyp of string (* word for introduction *)
	* Term.constr (* variable *)
        * string (* constructor *)
        * int (* arity *)
        * int (* number of constructors *)
  | Case_prop_subgoals_hyp of string (* word for introduction *)
	* Term.constr (* variable *)
        * int (* index of constructor *)
        * int (* arity *)
        * int (* number of constructors *)
  | Elim_subgoals_hyp of Term.constr (* variable *)
        * string (* constructor *)
        * int (* arity *)
        * (string list) (* rec hyp *)
        * int (* number of constructors *)
  | Elim_prop_subgoals_hyp of Term.constr (* variable *)
        * int (* index of constructor *)
        * int (* arity *)
        * (string list) (* rec hyp *)
        * int (* number of constructors *)
;;
let rec nrem l n =
  if n<=0 then l else nrem (list_rem l) (n-1)
;;

let rec nhd l n =
  if n<=0 then [] else (List.hd l)::(nhd (list_rem l) (n-1))
;;

let par_hypothese_de_recurrence () =  match !natural_language with
    French -> sphv [(prls ["par";"hypothèse";"de";"récurrence";","])]
| English -> sphv [(prls ["by";"induction";"hypothesis";","])]
;;

let  natural_lhyp lh hi =
  match hi with
    All_subgoals_hyp -> 
        ( match lh with
          [] -> spe
        |_-> prnatural_ghyp (group_lhyp lh) (supposons ()))
  | Reduce_hyp ->
      (match lh with
	[h] -> simplifions_H_T (string_of_id h.hyp_name) h.hyp_type
      |	_-> spe)
  | No_subgoals_hyp -> spe
  |Case_subgoals_hyp (sintro,var,c,a,ncase) -> (* sintro pas encore utilisee *)
      let s=ref c in
      for i=1 to a do
        let nh=(List.nth lh (i-1)) in
        s:=(!s)^" "^(string_of_id nh.hyp_name);
      done;
      if a>0 then s:="("^(!s)^")";
      sphv [  (if ncase>1
                     then sph[ sps ("-"^(cas ()));spb]
                     else spe);
                    (* spt var;sps "="; *) sps !s; sps ":";
           (prphrases (natural_hyp) (nrem lh a))]
  |Case_prop_subgoals_hyp (sintro,var,c,a,ncase) ->
      prnatural_ghyp (group_lhyp lh) sintro
  |Elim_subgoals_hyp (var,c,a,lhci,ncase) ->
      let nlh = List.length lh in
      let nlhci = List.length lhci in
      let lh0 = ref [] in
      for i=1 to (nlh-nlhci) do
         lh0:=(!lh0)@[List.nth lh (i-1)];
      done;
      let lh=nrem lh (nlh-nlhci) in
      let s=ref c in
      let lh1=ref [] in
      for i=1 to nlhci do
        let targ=(List.nth lhci (i-1))in
        let nh=(List.nth lh (i-1)) in
        if targ="arg" || targ="argrec" 
        then
            (s:=(!s)^" "^(string_of_id nh.hyp_name);
	     lh0:=(!lh0)@[nh])
        else lh1:=(!lh1)@[nh];
      done;
      let introhyprec=
          (if (!lh1)=[] then spe 
           else   par_hypothese_de_recurrence () )
      in          
      if a>0 then s:="("^(!s)^")";
      spv [sphv [(if ncase>1
                     then sph[ sps ("-"^(cas ()));spb]
                     else spe);
                     sps !s; sps ":"]; 
           prnatural_ghyp (group_lhyp !lh0) (supposons ());
           introhyprec;
           prl (natural_hyp) !lh1]
  |Elim_prop_subgoals_hyp (var,c,a,lhci,ncase) ->
      sphv [  (if ncase>1
                     then sph[ sps ("-"^(cas ()));spb;sps (string_of_int c);
                             sps ":";spb]
                     else spe);
           (prphrases (natural_hyp) lh )]

;;

(*****************************************************************************)
(*
    Analyse des tactiques.
*)

(*
let name_tactic tac =
      match tac with
        (Node(_,"Interp",
		(Node(_,_,
		      (Node(_,t,_))::_))::_))::_  -> t
       |(Node(_,t,_))::_ -> t
       | _ -> assert false
;;
*)
let name_tactic = function
  | TacIntroPattern _ -> "Intro"
  | TacAssumption -> "Assumption"
  | _ -> failwith "TODO"
;;

(*
let arg1_tactic tac =
  match tac with
    (Node(_,"Interp",
		(Node(_,_,
		      (Node(_,_,x::_))::_))::_))::_ ->x
  | (Node(_,_,x::_))::_ -> x
  | x::_ -> x
  | _ -> assert false
;;
*)

let arg1_tactic tac = failwith "TODO"

let arg2_tactic tac =
   match tac with
     (Node(_,"Interp",
		(Node(_,_,
		      (Node(_,_,_::x::_))::_))::_))::_ -> x
    | (Node(_,_,_::x::_))::_ -> x
    | _ -> assert false
;;

(*
type nat_tactic =
    Split of (Coqast.t list)
  | Generalize of (Coqast.t list)
  | Reduce of string*(Coqast.t list)
  | Other of string*(Coqast.t list)
;;

let analyse_tac tac =
  match tac with
    [Node (_, "Split", [Node (_, "BINDINGS", [])])]
      -> Split []
  | [Node (_, "Split",[Node(_, "BINDINGS",[Node(_, "BINDING",
	[Node (_, "COMMAND", x)])])])] 
     -> Split x
  | [Node (_, "Generalize", [Node (_, "COMMAND", x)])] 
     ->Generalize x
  | [Node (_, "Reduce", [Node (_, "REDEXP", [Node (_, mode, _)]);
             Node (_, "CLAUSE", lhyp)])] 
     -> Reduce(mode,lhyp)
  | [Node (_, x,la)] -> Other (x,la)
  | _ -> assert false
;;
*)
      




let id_of_command x =
  match x with
      Node(_,_,Node(_,_,y::_)::_) ->  y
     |_ -> assert false
;;
type type_info_subgoals =
    {ihsg: type_info_subgoals_hyp;
     isgintro : string}
;;

let rec show_goal lh ig g gs =
  match ig with
    "intros" ->
      if lh = []
      then spe
      else show_goal lh "standard" g gs 
  |"standard" ->
      (match (sort_of_type g gs) with
        Nprop -> donnons_une_proposition ()
      | Nformula -> montrons g
      | Ntype -> calculons_un_element_de g
      | Nfunction ->calculons_une_fonction_de_type g)
  | "apply" -> show_goal lh "" g gs
  | "simpl" ->en_simplifiant_on_obtient g
  | "rewrite" -> on_obtient g 
  | "equality" -> reste_a_montrer g
  | "trivial_equality" -> reste_a_montrer g
  | "" -> spe
  |_ -> sph[ sps "A faire ..."; spb; spt g; sps ". " ]
;;

let show_goal2 lh {ihsg=hi;isgintro=ig} g gs s =
  if ig="" && lh = []
  then spe
  else sphv [  show_goal lh ig g gs; sps s]
;;

let imaginez_une_preuve_de () =  match !natural_language with
    French -> "Imaginez une preuve de"
| English -> "Imagine a proof of"
;;

let donnez_un_element_de () =  match !natural_language with
    French -> "Donnez un element de"
| English -> "Give an element of";;

let intro_not_proved_goal gs =
   match gs with
     Prop(Null) -> imaginez_une_preuve_de ()
    |_ -> donnez_un_element_de ()
;;

let first_name_hyp_of_ntree {t_goal={newhyp=lh}}=
  match lh with
   {hyp_name=n}::_ -> n
  | _ -> assert false
;;

let rec find_type x t=
    match (kind_of_term (strip_outer_cast t)) with 
      Prod(y,ty,t) ->
	(match y with
	  Name y -> 
            if x=(string_of_id y) then ty
            else find_type x t
	| _ -> find_type x t)
     |_-> assert false 
;;

(***********************************************************************
Traitement des égalités
*)
(*
let is_equality e =
   match  (kind_of_term e) with
     AppL args ->
       (match (kind_of_term args.(0)) with
	 Const (c,_) ->
	   (match (string_of_sp c) with
	     "Equal" -> true
           | "eq" -> true
	   | "eqT" -> true
	   | "identityT" -> true
	   | _ -> false)
       | _ -> false)
   | _ -> false
;;
*)

let is_equality e =
  let e= (strip_outer_cast e) in
   match  (kind_of_term e) with
     App (f,args) -> (Array.length args) >= 3
   | _ -> false
;;

let terms_of_equality e =
  let e= (strip_outer_cast e) in
  match  (kind_of_term e) with
     App (f,args) -> (args.(1) , args.(2))
    | _ -> assert false
;;

let eq_term = eq_constr;;

let is_equality_tac = function
  | TacAtom (_,
      (TacExtend
	(_,("ERewriteLR"|"ERewriteRL"|"ERewriteLRocc"|"ERewriteRLocc"
	 |"ERewriteParallel"|"ERewriteNormal"
	 |"RewriteLR"|"RewriteRL"|"Replace"),_)
      | TacReduce _
      | TacSymmetry _ | TacReflexivity
      | TacExact _ | TacIntroPattern _ | TacIntroMove _ | TacAuto _)) -> true
  | _ -> false

let equalities_ntree ig ntree =
  let rec equalities_ntree ig ntree =
  if not (is_equality (concl ntree)) 
  then []
  else
    match (proof ntree) with
      Notproved ->  [(ig,ntree)]
    | Proof (tac,ltree) ->
	if is_equality_tac tac
      	then (match ltree with
          [] ->  [(ig,ntree)]
	| t::_ -> let res=(equalities_ntree ig t) in
	          if eq_term (concl ntree) (concl t)
		  then res
		  else (ig,ntree)::res)
	else  [(ig,ntree)]
  in 
  equalities_ntree ig ntree 
;;

let remove_seq_of_terms l =
  let rec remove_seq_of_terms l =    match l with
    a::b::l -> if (eq_term (fst a) (fst b))
    then remove_seq_of_terms (b::l)
    else a::(remove_seq_of_terms (b::l))
  | _ -> l
  in remove_seq_of_terms l
;;

let  list_to_eq l o=
  let switch = fun h h' -> (if o then h else h') in
   match l with
      [a] -> spt (fst a) 
   |  (a,h)::(b,h')::l ->
       let rec list_to_eq h l =
	 match l with
	   [] -> []
	 |  (b,h')::l ->
	     (sph [sps "="; spb; spt b; spb;tag_uselemma (switch h h') spe])
             :: (list_to_eq (switch h' h) l)
       in sph [spt a;  spb;
		 spv ((sph [sps "="; spb; spt b; spb; 
			     tag_uselemma (switch h h') spe])
		      ::(list_to_eq (switch h' h) l))]
  | _ -> assert false
;;

let stde = Global.env;;

let dbize env = Constrintern.interp_constr Evd.empty env;;

(**********************************************************************)
let rec natural_ntree ig ntree =
  let  {t_info=info;
	 t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	 t_proof=p} = ntree in
    let leq = List.rev (equalities_ntree ig ntree)  in
    if List.length leq > 1
    then (* Several equalities to treate ... *)
      (
       print_string("Several equalities to treate ...\n");
      let l1 = ref [] in
      let l2 = ref [] in
      List.iter
	(fun (_,ntree) ->
	 let lemma =  match (proof ntree) with
	   Proof (tac,ltree) ->
	     (try (sph [spt (dbize (gLOB ge) (arg1_tactic tac));(* TODO *)
			  (match ltree with
			    [] ->spe
			  | [_] -> spe
			  | _::l -> sphv[sps ": ";
					  prli (natural_ntree 
					    {ihsg=All_subgoals_hyp;
					      isgintro="standard"})
                            		    l])])
	      with _ -> sps "simplification"  )
	 | Notproved -> spe
	 in
 	  let (t1,t2)= terms_of_equality (concl ntree) in
	  l2:=(t2,lemma)::(!l2);
	  l1:=(t1,lemma)::(!l1))
	leq;
      l1:=remove_seq_of_terms !l1;
      l2:=remove_seq_of_terms !l2;
      l2:=List.rev !l2;
      let ltext=ref [] in
      if List.length !l1 > 1
      then (ltext:=(!ltext)@[list_to_eq !l1 true];
	    if List.length !l2 > 1 then
	      (ltext:=(!ltext)@[_et()];
	       ltext:=(!ltext)@[list_to_eq !l2 false]))
      else if List.length !l2 > 1 then ltext:=(!ltext)@[list_to_eq !l2 false];
      if !ltext<>[] then ltext:=[sps (bon_a ()); spv !ltext];
      let (ig,ntree)=(List.hd leq) in
      spv [(natural_lhyp lh ig.ihsg);
	    (show_goal2 lh ig g (nsort gf) "");
	    sph !ltext;
	    
	    natural_ntree {ihsg=All_subgoals_hyp;
                            isgintro=
			    let  (t1,t2)= terms_of_equality (concl ntree) in
			    if eq_term t1 t2
			    then "trivial_equality"
			    else "equality"}
	      ntree]
      	)
    else
    let ntext =
      let gs=nsort gf in
      match p with
   	Notproved ->  spv [ (natural_lhyp lh ig.ihsg);
                            sph [spi; sps (intro_not_proved_goal gs); spb; 
                                  tag_toprove g  ]
			  ]

      | Proof (TacId _,ltree) -> natural_ntree ig (List.hd ltree)
      | Proof (TacAtom (_,tac),ltree) -> 
	 (let ntext = 
	  match tac with
(* Pas besoin de l'argument éventuel de la tactique *)
	    TacIntroPattern _ -> natural_intros ig lh g gs ltree
	  | TacIntroMove _ -> natural_intros ig lh g gs ltree
	  | TacFix (_,n) -> natural_fix ig lh g gs n ltree
	  | TacSplit (_,NoBindings) -> natural_split ig lh g gs ge [] ltree
	  | TacSplit(_,ImplicitBindings l) -> natural_split ig lh g gs ge l ltree
	  | TacGeneralize l -> natural_generalize ig lh g gs ge l ltree
	  | TacRight _ -> natural_right ig lh g gs ltree
	  | TacLeft _ -> natural_left ig lh g gs ltree
	  | (* "Simpl" *)TacReduce (r,cl)  ->
	      natural_reduce ig lh g gs ge r cl ltree
	  | TacExtend (_,"InfoAuto",[]) -> natural_infoauto ig lh g gs ltree
	  | TacAuto _ -> natural_auto ig lh g gs ltree
	  | TacExtend (_,"EAuto",_) -> natural_auto ig lh g gs ltree
	  | TacTrivial _ -> natural_trivial ig lh g gs ltree
	  | TacAssumption -> natural_trivial ig lh g gs ltree
	  | TacClear _ -> natural_clear ig lh g gs ltree
(* Besoin de l'argument de la tactique *)
	  | TacSimpleInduction (NamedHyp id,_) -> 
              natural_induction ig lh g gs ge id ltree false
	  | TacExtend (_,"InductionIntro",[a]) -> 
              let id=(out_gen wit_ident a) in
              natural_induction ig lh g gs ge id ltree true
	  | TacApply (c,_) -> natural_apply ig lh g gs c ltree
	  | TacExact c -> natural_exact ig lh g gs c ltree
	  | TacCut c -> natural_cut ig lh g gs c ltree
	  | TacExtend (_,"CutIntro",[a]) ->
	      let c = out_gen wit_constr a in
	      natural_cutintro ig lh g gs a ltree
	  | TacCase (c,_) -> natural_case ig lh g gs ge c ltree false
	  | TacExtend (_,"CaseIntro",[a]) ->
	      let c = out_gen wit_constr a in
	      natural_case ig lh g gs ge c ltree true
	  | TacElim ((c,_),_) -> natural_elim ig lh g gs ge c ltree false
	  | TacExtend (_,"ElimIntro",[a]) ->
	      let c = out_gen wit_constr a in
	      natural_elim ig lh g gs ge c ltree true
	  | TacExtend (_,"Rewrite",[_;a]) ->
	      let (c,_) = out_gen wit_constr_with_bindings a in
	      natural_rewrite ig lh g gs c ltree
	  | TacExtend (_,"ERewriteRL",[a]) ->
	      let c = out_gen wit_constr a in (* TODO *)
	      natural_rewrite ig lh g gs c ltree
	  | TacExtend (_,"ERewriteLR",[a]) ->
	      let c = out_gen wit_constr a in (* TODO *)
	      natural_rewrite ig lh g gs c ltree
	  |_ -> natural_generic ig lh g gs (sps (name_tactic tac)) (prl sp_tac [tac]) ltree
         in
          ntext (* spwithtac ntext tactic*)
          )
      | Proof _ -> failwith "Don't know what to do with that"
    in   
         if info<>"not_proved"
         then spshrink info ntext
         else ntext
and  natural_generic  ig lh g gs tactic tac ltree =
  spv
    [ (natural_lhyp lh ig.ihsg);
      (show_goal2 lh ig g gs "");
      on_applique_la_tactique tactic tac ;
      (prli(natural_ntree  
	      {ihsg=All_subgoals_hyp;
		isgintro="standard"})
         ltree)
    ]
and natural_clear ig lh g gs ltree = natural_ntree ig (List.hd ltree)
(*
    spv
    [ (natural_lhyp lh ig.ihsg);
      (show_goal2 lh ig g gs "");
      (prl (natural_ntree ig) ltree)
    ]
*)
and natural_intros ig lh g gs ltree =
  spv
         [  (natural_lhyp lh ig.ihsg);
            (show_goal2 lh ig g gs "");
            (prl (natural_ntree  
                {ihsg=All_subgoals_hyp;
                 isgintro="intros"})
                            ltree)
        ]
and natural_apply ig lh g gs arg ltree =
  let lg = List.map concl ltree in
  match lg with
    [] ->
      spv
        [ (natural_lhyp lh ig.ihsg);
	  de_A_il_vient_B arg g  
        ]
  | [sg]->
      spv
        [ (natural_lhyp lh ig.ihsg);
          (show_goal2 lh
	     {ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
	                              then "standard"
	                              else ""}
	     g gs "");
          grace_a_A_il_suffit_de_montrer_LA arg [spt sg];
	  sph [spi ; natural_ntree 
		  {ihsg=All_subgoals_hyp;
		    isgintro="apply"} (List.hd ltree)]
	]       
  | _ ->
      let ln = List.map (fun _ -> new_name()) lg in
      spv
        [ (natural_lhyp lh ig.ihsg);
          (show_goal2 lh
	     {ihsg=ig.ihsg; isgintro= if ig.isgintro<>"apply"
	                              then "standard"
			              else ""}
	     g gs "");
          grace_a_A_il_suffit_de_montrer_LA arg
	    (List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
	       lg ln);
	  sph [spi; spv (List.map2
			   (fun x n -> sph [sps ("("^n^"):"); spb;
					     natural_ntree 
					       {ihsg=All_subgoals_hyp;
						 isgintro="apply"} x])
			   ltree ln)]
        ]
and natural_rem_goals ltree =
  let lg = List.map concl ltree in
  match lg with
    [] -> spe
  | [sg]->
      spv
        [ reste_a_montrer_LA [spt sg];
	  sph [spi ; natural_ntree 
		  {ihsg=All_subgoals_hyp;
		    isgintro="apply"} (List.hd ltree)]
	]       
  | _ ->
      let ln = List.map (fun _ -> new_name()) lg in
      spv
        [   reste_a_montrer_LA 
	    (List.map2 (fun g n -> sph [sps ("("^n^")"); spb; spt g])
	       lg ln);
	  sph [spi; spv (List.map2
			   (fun x n -> sph [sps ("("^n^"):"); spb;
					     natural_ntree 
					       {ihsg=All_subgoals_hyp;
						 isgintro="apply"} x])
			   ltree ln)]
        ]
and natural_exact ig lh g gs arg ltree =
spv
         [  
             (natural_lhyp lh ig.ihsg);
             (let {ihsg=pi;isgintro=ig}= ig in
               (show_goal2 lh {ihsg=pi;isgintro=""}
                   g gs ""));
             (match gs with
               Prop(Null) -> _A_est_immediat_par_B g arg
              |_ -> le_resultat_est arg)

        ]
and natural_cut ig lh g gs arg ltree =
  spv
         [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
             (prli(natural_ntree  
                    {ihsg=All_subgoals_hyp;isgintro="standard"})
                            (List.rev ltree));
             de_A_on_deduit_donc_B arg g
        ]
and natural_cutintro ig lh g gs arg ltree =
  spv
         [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
             sph [spi;
                    (natural_ntree  
                       {ihsg=All_subgoals_hyp;isgintro=""}
                       (List.nth ltree 1))];
             sph [spi;
                    (natural_ntree  
                       {ihsg=No_subgoals_hyp;isgintro=""}
                       (List.nth ltree 0))]
        ]
and whd_betadeltaiota x = whd_betaiotaevar (Global.env()) Evd.empty x
and type_of_ast s c = type_of (Global.env()) Evd.empty (constr_of_ast c)
and prod_head t =
  match (kind_of_term (strip_outer_cast t)) with 
     Prod(_,_,c) -> prod_head c
(*    |App(f,a) -> f *)
    | _ -> t
and string_of_sp sp = string_of_id (basename sp)
and constr_of_mind mip i =
  (string_of_id mip.mind_consnames.(i-1))
and arity_of_constr_of_mind env indf i =
     (get_constructors env indf).(i-1).cs_nargs
and gLOB ge = Global.env_of_context ge  (* (Global.env()) *)

and natural_case ig lh g gs ge arg1 ltree with_intros =
 let env= (gLOB ge) in
 let targ1 = prod_head (type_of env Evd.empty arg1) in
 let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
 let ncti= Array.length(get_constructors env indf) in
 let (ind,_) = dest_ind_family indf in
 let (mib,mip) = lookup_mind_specif env ind in
 let ti =(string_of_id mip.mind_typename) in
 let type_arg= targ1 (* List.nth targ (mis_index dmi)*)  in
 if  ncti<>1
(* Zéro ou Plusieurs constructeurs *)
 then (   
   spv
         [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
             (match (nsort targ1) with
               Prop(Null) ->
		 (match ti with
		   "or" ->  discutons_avec_A type_arg
                 | _ -> utilisons_A arg1)
             |_ -> selon_les_valeurs_de_A arg1);
            (let ci=ref 0 in
             (prli
                 (fun treearg -> ci:=!ci+1;
                      let nci=(constr_of_mind mip !ci) in
                      let aci=if with_intros
			      then (arity_of_constr_of_mind env indf !ci)
		              else 0 in
                      let ici= (!ci) in
                    sph[ (natural_ntree  
                          {ihsg=
                             (match (nsort targ1) with
                                Prop(Null) ->
                                   Case_prop_subgoals_hyp (supposons (),arg1,ici,aci,
                                     (List.length ltree))
                               |_-> Case_subgoals_hyp ("",arg1,nci,aci,
                                                (List.length ltree)));
                           isgintro= if with_intros then "" else "standard"}
                          treearg)
                    ])
                  (nrem ltree ((List.length ltree)- ncti))));
	    (sph [spi; (natural_rem_goals
			  (nhd ltree ((List.length ltree)- ncti)))])
         ] )
(* Cas d'un seul constructeur *)
     else (  

     spv
     [ (natural_lhyp lh ig.ihsg);
       (show_goal2 lh ig g gs "");
       de_A_on_a arg1;
       (let treearg=List.hd ltree in
       let nci=(constr_of_mind mip 1) in
       let aci=
	 if with_intros
         then (arity_of_constr_of_mind env indf 1)
	 else 0 in
       let ici= 1 in
       sph[ (natural_ntree  
               {ihsg=
                 (match (nsort targ1) with
                   Prop(Null) ->
                     Case_prop_subgoals_hyp ("",arg1,1,aci,
					     (List.length ltree))
                 |_-> Case_subgoals_hyp ("",arg1,nci,aci,
                                         (List.length ltree)));
                 isgintro=""}
               treearg)
          ]);
       (sph [spi; (natural_rem_goals
		     (nhd ltree ((List.length ltree)- 1)))])
     ] 
     )
(*    with _ ->natural_generic ig lh g gs (sps "Case")  (spt arg1) ltree *)

(*****************************************************************************)
(*
   Elim
*)
and prod_list_var t =
   match (kind_of_term (strip_outer_cast t)) with 
      Prod(_,t,c) -> t::(prod_list_var c)
     |_ -> []
and  hd_is_mind t ti =
    try (let env = Global.env() in
         let IndType (indf,targ) = find_rectype env Evd.empty t in
	 let ncti= Array.length(get_constructors env indf) in
	 let (ind,_) = dest_ind_family indf in
         let (mib,mip) = lookup_mind_specif env ind in
	 (string_of_id mip.mind_typename) = ti)
    with _ -> false
and mind_ind_info_hyp_constr indf c =
  let env = Global.env() in
  let (ind,_) = dest_ind_family indf in
  let (mib,mip) = lookup_mind_specif env ind in
  let p = mip.mind_nparams in
  let a = arity_of_constr_of_mind env indf c in
  let lp=ref (get_constructors env indf).(c).cs_args in
  let lr=ref [] in
  let ti = (string_of_id mip.mind_typename) in
  for i=1 to a do
     match !lp with
     ((_,_,t)::lp1)->
       if hd_is_mind t ti
       then (lr:=(!lr)@["argrec";"hyprec"]; lp:=List.tl lp1)
       else (lr:=(!lr)@["arg"];lp:=lp1)
     |  _ -> raise (Failure "mind_ind_info_hyp_constr")
  done;
  !lr
(*
 mind_ind_info_hyp_constr "le" 2;;
donne  ["arg"; "argrec"] 
mind_ind_info_hyp_constr "le" 1;;
donne []
 mind_ind_info_hyp_constr "nat" 2;;
donne ["argrec"]
*)

and natural_elim ig lh g gs ge arg1 ltree with_intros=
 let env= (gLOB ge) in
 let targ1 = prod_head (type_of env Evd.empty arg1) in
 let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
 let ncti= Array.length(get_constructors env indf) in
 let (ind,_) = dest_ind_family indf in
 let (mib,mip) = lookup_mind_specif env ind in
 let ti =(string_of_id mip.mind_typename) in
 let type_arg=targ1 (* List.nth targ (mis_index dmi) *) in
  spv
         [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
             (match (nsort targ1) with
               Prop(Null) -> utilisons_A arg1
	     |_ ->procedons_par_recurrence_sur_A arg1);
            (let ci=ref 0 in
             (prli
                 (fun treearg -> ci:=!ci+1;
                      let nci=(constr_of_mind mip !ci) in
                      let aci=(arity_of_constr_of_mind env indf !ci) in
                      let hci=
			if with_intros
			then mind_ind_info_hyp_constr indf  !ci
		      	else [] in
                      let ici= (!ci) in
                    sph[ (natural_ntree  
                          {ihsg=
                             (match (nsort targ1) with
                                Prop(Null) ->
                                   Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
                                     (List.length ltree))
                               |_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
                                                (List.length ltree)));
                           isgintro= ""}
                          treearg)
                    ])
                  (nhd ltree ncti)));
	    (sph [spi; (natural_rem_goals (nrem ltree ncti))])
        ]
(* )
  with _ ->natural_generic ig lh g gs (sps "Elim")  (spt arg1) ltree *)

(*****************************************************************************)
(*
   InductionIntro n
*) 
and natural_induction ig lh g gs ge arg2 ltree with_intros=
 let env = (gLOB (g_env (List.hd ltree))) in
 let arg1= mkVar arg2 in
 let targ1 = prod_head (type_of env Evd.empty arg1) in
 let IndType (indf,targ) = find_rectype env Evd.empty targ1 in
 let ncti= Array.length(get_constructors env indf) in
 let (ind,_) = dest_ind_family indf in
 let (mib,mip) = lookup_mind_specif env ind in
 let ti =(string_of_id mip.mind_typename) in
 let type_arg= targ1(*List.nth targ (mis_index dmi)*) in

 let lh1= hyps (List.hd ltree) in (* la liste des hyp jusqu'a n *)
 (* on les enleve des hypotheses des sous-buts *)
 let ltree = List.map
     (fun {t_info=info;
	    t_goal={newhyp=lh;t_concl=g;t_full_concl=gf;t_full_env=ge};
	    t_proof=p} ->
	  {t_info=info;
	    t_goal={newhyp=(nrem lh (List.length lh1));
		     t_concl=g;t_full_concl=gf;t_full_env=ge};
	    t_proof=p}) ltree in
 spv
   [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
	   (natural_lhyp lh1 All_subgoals_hyp);
             (match (print_string "targ1------------\n";(nsort targ1)) with
               Prop(Null) -> utilisons_A arg1
	     |_ -> procedons_par_recurrence_sur_A arg1);
            (let ci=ref 0 in
             (prli
                 (fun treearg -> ci:=!ci+1;
                      let nci=(constr_of_mind mip !ci) in
                      let aci=(arity_of_constr_of_mind env indf !ci) in
                      let hci= 
			if with_intros
			then mind_ind_info_hyp_constr indf  !ci
		      	else [] in
                      let ici= (!ci) in
                    sph[ (natural_ntree  
                          {ihsg=
                             (match (nsort targ1) with
                                Prop(Null) ->
                                   Elim_prop_subgoals_hyp (arg1,ici,aci,hci,
                                     (List.length ltree))
                               |_-> Elim_subgoals_hyp (arg1,nci,aci,hci,
                                                (List.length ltree)));
                           isgintro= "standard"}
                          treearg)
                    ])
                  ltree))
        ]
(***********************************************************************)
(* Points fixes *)

and natural_fix ig lh g gs narg ltree =
  let {t_info=info;
	t_goal={newhyp=lh1;t_concl=g1;t_full_concl=gf1;
                   t_full_env=ge1};t_proof=p1}=(List.hd ltree) in
  match lh1 with
     {hyp_name=nfun;hyp_type=tfun}::lh2 ->
  let ltree=[{t_info=info;
	       t_goal={newhyp=lh2;t_concl=g1;t_full_concl=gf1;
                          t_full_env=ge1};
	       t_proof=p1}] in
  spv
         [  (natural_lhyp lh ig.ihsg);
             calculons_la_fonction_F_de_type_T_par_recurrence_sur_son_argument_A  nfun tfun narg;
             (prli(natural_ntree  
                   {ihsg=All_subgoals_hyp;isgintro=""})
                            ltree)
        ]
   | _ -> assert false
and natural_reduce ig lh g gs ge mode la ltree =
  match la with
    {onhyps=Some[];onconcl=true} -> 
      spv
        [  (natural_lhyp lh ig.ihsg);
          (show_goal2 lh ig g gs ""); 
          (prl (natural_ntree 
		  {ihsg=All_subgoals_hyp;isgintro="simpl"})
             ltree)
        ]
  | {onhyps=Some[hyp]; onconcl=false} ->
      spv
        [  (natural_lhyp lh ig.ihsg);
          (show_goal2 lh ig g gs ""); 
          (prl (natural_ntree 
		  {ihsg=Reduce_hyp;isgintro=""})
             ltree)
        ]
  | _ -> assert false
and natural_split ig lh g gs ge la ltree =
  match la with
    [arg] -> 
      let env= (gLOB ge) in
      let arg1= (*dbize env*) arg in
      spv
      	[ (natural_lhyp lh ig.ihsg);
          (show_goal2 lh ig g gs ""); 
	  pour_montrer_G_la_valeur_recherchee_est_A  g arg1;
          (prl (natural_ntree 
		  {ihsg=All_subgoals_hyp;isgintro="standard"})
             ltree)
        ]
  | [] ->
      spv
        [ (natural_lhyp lh ig.ihsg);
          (prli(natural_ntree  
                  {ihsg=All_subgoals_hyp;isgintro="standard"})
             ltree)
        ]
  | _ -> assert false
and natural_generalize ig lh g gs ge la ltree =
  match la with
    [arg] ->
      let env= (gLOB ge) in
      let arg1= (*dbize env*) arg in
      let type_arg=type_of (Global.env()) Evd.empty arg in
(*      let type_arg=type_of_ast ge arg in*)
      spv
      	[ (natural_lhyp lh ig.ihsg);
          (show_goal2 lh ig g gs ""); 
	  on_se_sert_de_A   arg1;
          (prl (natural_ntree 
		  {ihsg=All_subgoals_hyp;isgintro=""})
             ltree)
        ]
    | _ -> assert false
and natural_right ig lh g gs ltree =
  spv
         [ (natural_lhyp lh ig.ihsg);
            (prli(natural_ntree  
                {ihsg=All_subgoals_hyp;isgintro="standard"})
                            ltree); 
            d_ou_A g  
        ]
and natural_left ig lh g gs ltree =
  spv
         [ (natural_lhyp lh ig.ihsg);
            (prli(natural_ntree  
                {ihsg=All_subgoals_hyp;isgintro="standard"})
                            ltree); 
             d_ou_A g  
        ]
and natural_auto ig lh g gs ltree =
  match ig.isgintro with
   "trivial_equality" -> spe
  | _ -> 
      if ltree=[]
      then sphv [(natural_lhyp lh ig.ihsg);
		  (show_goal2 lh ig g gs "");
		  coq_le_demontre_seul ()]
      else spv [(natural_lhyp lh ig.ihsg);
		 (show_goal2 lh ig g gs "");
		 (prli (natural_ntree {ihsg=All_subgoals_hyp;isgintro=""}
			  )
                    ltree)]
and natural_infoauto ig lh g gs ltree =
 match ig.isgintro with
   "trivial_equality" ->
     spshrink "trivial_equality"
       (natural_ntree {ihsg=All_subgoals_hyp;isgintro="standard"}
		 (List.hd ltree))
  | _ ->   sphv [(natural_lhyp lh ig.ihsg);
	 (show_goal2 lh ig g gs "");
	 coq_le_demontre_seul ();
       spshrink "auto"
		    (sph [spi;
		       (natural_ntree
			  {ihsg=All_subgoals_hyp;isgintro=""}
			  (List.hd ltree))])]
and natural_trivial ig lh g gs ltree =
  if ltree=[]
  then sphv [(natural_lhyp lh ig.ihsg);
	      (show_goal2 lh ig g gs "");
	      ce_qui_est_trivial () ]
  else spv [(natural_lhyp lh ig.ihsg);
	     (show_goal2 lh ig g gs ". ");
            (prli(natural_ntree  
                      {ihsg=All_subgoals_hyp;isgintro="standard"})
                            ltree)]
and natural_rewrite ig lh g gs arg ltree =
  spv
         [  (natural_lhyp lh ig.ihsg);
             (show_goal2 lh ig g gs "");
             en_utilisant_l_egalite_A arg;
            (prli(natural_ntree  
                 {ihsg=All_subgoals_hyp;isgintro="rewrite"})
                            ltree)
        ]
;;

let natural_ntree_path ig g =
  Random.init(0);
        natural_ntree ig g
;;

let show_proof lang gpath =
  (match lang with
     "fr" -> natural_language:=French
    |"en" -> natural_language:=English
    | _ -> natural_language:=English);
  path:=List.rev gpath;
  name_count:=0;
  let ntree=(get_nproof ()) in
  let {t_info=i;t_goal=g;t_proof=p} =ntree in
  root_of_text_proof
    (sph [(natural_ntree_path {ihsg=All_subgoals_hyp;
				isgintro="standard"}
	                      {t_info="not_proved";t_goal=g;t_proof=p});
           spr])
    ;;

let show_nproof path =
  pp (sp_print (sph [spi; show_proof "fr" path]));;

vinterp_add "ShowNaturalProof"
	    (fun _ ->
		 (fun () ->show_nproof[];()));;

(***********************************************************************
debug sous cygwin:

PATH=/usr/local/bin:/usr/bin:$PATH
COQTOP=d:/Tools/coq-7avril
CAMLLIB=/usr/local/lib/ocaml
CAMLP4LIB=/usr/local/lib/camlp4
export CAMLLIB
export COQTOP
export CAMLP4LIB 
cd d:/Tools/pcoq/src/text
d:/Tools/coq-7avril/bin/coqtop.byte.exe -I /cygdrive/D/Tools/pcoq/src/abs_syntax  -I /cygdrive/D/Tools/pcoq/src/text -I /cygdrive/D/Tools/pcoq/src/coq -I /cygdrive/D/Tools/pcoq/src/pbp -I /cygdrive/D/Tools/pcoq/src/dad -I /cygdrive/D/Tools/pcoq/src/history

 
 
Lemma l1: (A, B : Prop) A \/ B -> B ->  A.
Intros.
Elim H.
Auto.
Qed.
 

Drop.

#use "/cygdrive/D/Tools/coq-7avril/dev/base_include";;
#load "xlate.cmo";;
#load "translate.cmo";;
#load "showproof_ct.cmo";;
#load "showproof.cmo";;
#load "pbp.cmo";;
#load "debug_tac.cmo";;
#load "name_to_ast.cmo";;
#load "paths.cmo";;
#load "dad.cmo";;
#load "vtp.cmo";;
#load "history.cmo";;
#load "centaur.cmo";;
Xlate.set_xlate_mut_stuff Centaur.globcv;;
Xlate.declare_in_coq();;

#use "showproof.ml";;

let pproof x = pP (sp_print x);;
Pp_control.set_depth_boxes 100;;
#install_printer  pproof;;

ep();;
let bidon = ref (constr_of_string "O");; 

#trace to_nproof;;
***********************************************************************)
let ep()=show_proof "fr" [];;