1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
open Paths;;
type tree = {mutable index : int;
parent : tree option;
path_to_root : int list;
mutable is_open : bool;
mutable sub_proofs : tree list};;
type prf_info = {
mutable prf_length : int;
mutable ranks_and_goals : (int * int * tree) list;
mutable border : tree list;
prf_struct : tree};;
let theorem_proofs = ((Hashtbl.create 17):
(string, prf_info) Hashtbl.t);;
let rec mk_trees_for_goals path tree rank k n =
if k = (n + 1) then
[]
else
{ index = rank;
parent = tree;
path_to_root = k::path;
is_open = true;
sub_proofs = [] } ::(mk_trees_for_goals path tree rank (k+1) n);;
let push_command s rank ngoals =
let ({prf_length = this_length;
ranks_and_goals = these_ranks;
border = this_border} as proof_info) =
Hashtbl.find theorem_proofs s in
let rec push_command_aux n = function
[] -> failwith "the given rank was too large"
| a::l ->
if n = 1 then
let {path_to_root = p} = a in
let new_trees = mk_trees_for_goals p (Some a) (this_length + 1) 1 ngoals in
new_trees,(new_trees@l),a
else
let new_trees, res, this_tree = push_command_aux (n-1) l in
new_trees,(a::res),this_tree in
let new_trees, new_border, this_tree =
push_command_aux rank this_border in
let new_length = this_length + 1 in
begin
proof_info.border <- new_border;
proof_info.prf_length <- new_length;
proof_info.ranks_and_goals <- (rank, ngoals, this_tree)::these_ranks;
this_tree.index <- new_length;
this_tree.is_open <- false;
this_tree.sub_proofs <- new_trees
end;;
let get_tree_for_rank thm_name rank =
let {ranks_and_goals=l;prf_length=n} =
Hashtbl.find theorem_proofs thm_name in
let rec get_tree_aux = function
[] ->
failwith
"inconsistent values for thm_name and rank in get_tree_for_rank"
| (_,_,({index=i} as tree))::tl ->
if i = rank then
tree
else
get_tree_aux tl in
get_tree_aux l;;
let get_path_for_rank thm_name rank =
let {path_to_root=l}=get_tree_for_rank thm_name rank in
l;;
let rec list_descendants_aux l tree =
let {index = i; is_open = open_status; sub_proofs = tl} = tree in
let res = (List.fold_left list_descendants_aux l tl) in
if open_status then i::res else res;;
let list_descendants thm_name rank =
list_descendants_aux [] (get_tree_for_rank thm_name rank);;
let parent_from_rank thm_name rank =
let {parent=mommy} = get_tree_for_rank thm_name rank in
match mommy with
Some x -> Some x.index
| None -> None;;
let first_child_command thm_name rank =
let {sub_proofs = l} = get_tree_for_rank thm_name rank in
let rec first_child_rec = function
[] -> None
| {index=i;is_open=b}::l ->
if b then
(first_child_rec l)
else
Some i in
first_child_rec l;;
type index_or_rank = Is_index of int | Is_rank of int;;
let first_child_command_or_goal thm_name rank =
let proof_info = Hashtbl.find theorem_proofs thm_name in
let {sub_proofs=l}=get_tree_for_rank thm_name rank in
match l with
[] -> None
| ({index=i;is_open=b} as t)::_ ->
if b then
let rec get_rank n = function
[] -> failwith "A goal is lost in first_child_command_or_goal"
| a::l ->
if a==t then
n
else
get_rank (n + 1) l in
Some(Is_rank(get_rank 1 proof_info.border))
else
Some(Is_index i);;
let next_sibling thm_name rank =
let ({parent=mommy} as t)=get_tree_for_rank thm_name rank in
match mommy with
None -> None
| Some real_mommy ->
let {sub_proofs=l}=real_mommy in
let rec next_sibling_aux b = function
(opt_first, []) ->
if b then
opt_first
else
failwith "inconsistency detected in next_sibling"
| (opt_first, {is_open=true}::l) ->
next_sibling_aux b (opt_first, l)
| (Some(first),({index=i; is_open=false} as t')::l) ->
if b then
Some i
else
next_sibling_aux (t == t') (Some first,l)
| None,({index=i;is_open=false} as t')::l ->
next_sibling_aux (t == t') ((Some i), l)
in
Some (next_sibling_aux false (None, l));;
let prefix l1 l2 =
let l1rev = List.rev l1 in
let l2rev = List.rev l2 in
is_prefix l1rev l2rev;;
let rec remove_all_prefixes p = function
[] -> []
| a::l ->
if is_prefix p a then
(remove_all_prefixes p l)
else
a::(remove_all_prefixes p l);;
let recompute_border tree =
let rec recompute_border_aux tree acc =
let {is_open=b;sub_proofs=l}=tree in
if b then
tree::acc
else
List.fold_right recompute_border_aux l acc in
recompute_border_aux tree [];;
let historical_undo thm_name rank =
let ({ranks_and_goals=l} as proof_info)=
Hashtbl.find theorem_proofs thm_name in
let rec undo_aux acc = function
[] -> failwith "bad rank provided for undoing in historical_undo"
| (r, n, ({index=i} as tree))::tl ->
let this_path_reversed = List.rev tree.path_to_root in
let res = remove_all_prefixes this_path_reversed acc in
if i = rank then
begin
proof_info.prf_length <- i-1;
proof_info.ranks_and_goals <- tl;
tree.is_open <- true;
tree.sub_proofs <- [];
proof_info.border <- recompute_border proof_info.prf_struct;
this_path_reversed::res
end
else
begin
tree.is_open <- true;
tree.sub_proofs <- [];
undo_aux (this_path_reversed::res) tl
end
in
List.map List.rev (undo_aux [] l);;
(* The following function takes a list of trees and compute the
number of elements whose path is lexically smaller or a suffixe of
the path given as a first argument. This works under the precondition that
the list is lexicographically order. *)
let rec logical_undo_on_border the_tree rev_path = function
[] -> (0,[the_tree])
| ({path_to_root=p}as tree)::tl ->
let p_rev = List.rev p in
if is_prefix rev_path p_rev then
let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
(k+1,res)
else if lex_smaller p_rev rev_path then
let (k,res) = (logical_undo_on_border the_tree rev_path tl) in
(k,tree::res)
else
(0, the_tree::tree::tl);;
let logical_undo thm_name rank =
let ({ranks_and_goals=l; border=last_border} as proof_info)=
Hashtbl.find theorem_proofs thm_name in
let ({path_to_root=ref_path} as ref_tree)=get_tree_for_rank thm_name rank in
let rev_ref_path = List.rev ref_path in
let rec logical_aux lex_smaller_offset family_width = function
[] -> failwith "this case should never happen in logical_undo"
| (r,n,({index=i;path_to_root=this_path; sub_proofs=these_goals} as tree))::
tl ->
let this_path_rev = List.rev this_path in
let new_rank, new_offset, new_width, kept =
if is_prefix rev_ref_path this_path_rev then
(r + lex_smaller_offset), lex_smaller_offset,
(family_width + 1 - n), false
else if lex_smaller this_path_rev rev_ref_path then
r, (lex_smaller_offset - 1 + n), family_width, true
else
(r + 1 - family_width+ lex_smaller_offset),
lex_smaller_offset, family_width, true in
if i=rank then
[i,new_rank],[], tl, rank
else
let ranks_undone, ranks_kept, ranks_and_goals, current_rank =
(logical_aux new_offset new_width tl) in
begin
if kept then
begin
tree.index <- current_rank;
ranks_undone, ((i,new_rank)::ranks_kept),
((new_rank, n, tree)::ranks_and_goals),
(current_rank + 1)
end
else
((i,new_rank)::ranks_undone), ranks_kept,
ranks_and_goals, current_rank
end in
let number_suffix, new_border =
logical_undo_on_border ref_tree rev_ref_path last_border in
let changed_ranks_undone, changed_ranks_kept, new_ranks_and_goals,
new_length_plus_one = logical_aux 0 number_suffix l in
let the_goal_index =
let rec compute_goal_index n = function
[] -> failwith "this case should never happen in logical undo (2)"
| {path_to_root=path}::tl ->
if List.rev path = (rev_ref_path) then
n
else
compute_goal_index (n+1) tl in
compute_goal_index 1 new_border in
begin
ref_tree.is_open <- true;
ref_tree.sub_proofs <- [];
proof_info.border <- new_border;
proof_info.ranks_and_goals <- new_ranks_and_goals;
proof_info.prf_length <- new_length_plus_one - 1;
changed_ranks_undone, changed_ranks_kept, proof_info.prf_length,
the_goal_index
end;;
let start_proof thm_name =
let the_tree =
{index=0;parent=None;path_to_root=[];is_open=true;sub_proofs=[]} in
Hashtbl.add theorem_proofs thm_name
{prf_length=0;
ranks_and_goals=[];
border=[the_tree];
prf_struct=the_tree};;
let dump_sequence chan s =
match (Hashtbl.find theorem_proofs s) with
{ranks_and_goals=l}->
let rec dump_rec = function
[] -> ()
| (r,n,_)::tl ->
dump_rec tl;
output_string chan (string_of_int r);
output_string chan ",";
output_string chan (string_of_int n);
output_string chan "\n" in
begin
dump_rec l;
output_string chan "end\n"
end;;
let proof_info_as_string s =
let res = ref "" in
match (Hashtbl.find theorem_proofs s) with
{prf_struct=tree} ->
let open_goal_counter = ref 0 in
let rec dump_rec = function
{index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
begin
(match the_parent with
None ->
if op then
res := !res ^ "\"open goal\"\n"
| Some {index=j} ->
begin
res := !res ^ (string_of_int j);
res := !res ^ " -> ";
if op then
begin
res := !res ^ "\"open goal ";
open_goal_counter := !open_goal_counter + 1;
res := !res ^ (string_of_int !open_goal_counter);
res := !res ^ "\"\n";
end
else
begin
res := !res ^ (string_of_int i);
res := !res ^ "\n"
end
end);
List.iter dump_rec trees
end in
dump_rec tree;
!res;;
let dump_proof_info chan s =
match (Hashtbl.find theorem_proofs s) with
{prf_struct=tree} ->
let open_goal_counter = ref 0 in
let rec dump_rec = function
{index=i;sub_proofs=trees;parent=the_parent;is_open=op} ->
begin
(match the_parent with
None ->
if op then
output_string chan "\"open goal\"\n"
| Some {index=j} ->
begin
output_string chan (string_of_int j);
output_string chan " -> ";
if op then
begin
output_string chan "\"open goal ";
open_goal_counter := !open_goal_counter + 1;
output_string chan (string_of_int !open_goal_counter);
output_string chan "\"\n";
end
else
begin
output_string chan (string_of_int i);
output_string chan "\n"
end
end);
List.iter dump_rec trees
end in
dump_rec tree;;
let get_nth_open_path s n =
match Hashtbl.find theorem_proofs s with
{border=l} ->
let {path_to_root=p}=List.nth l (n - 1) in
p;;
let border_length s =
match Hashtbl.find theorem_proofs s with
{border=l} -> List.length l;;
|