1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
(*i camlp4deps: "parsing/grammar.cma" i*)
(*s FunInv Tactic: inversion following the shape of a function. *)
(* Deprecated: see indfun_main.ml4 instead *)
(* Don't delete this file yet, it may be used for other purposes *)
(*i*)
open Termops
open Equality
open Names
open Pp
open Tacmach
open Proof_type
open Tacinterp
open Tactics
open Tacticals
open Term
open Util
open Printer
open Reductionops
open Inductiveops
open Coqlib
open Refine
open Typing
open Declare
open Decl_kinds
open Safe_typing
open Vernacinterp
open Evd
open Environ
open Entries
open Setoid_replace
open Tacinvutils
(*i*)
module Smap = Map.Make(struct type t = constr let compare = compare end)
let smap_to_list m = Smap.fold (fun c cb l -> (c,cb)::l) m []
let merge_smap m1 m2 = Smap.fold (fun c cb m -> Smap.add c cb m) m1 m2
let rec listsuf i l = if i<=0 then l else listsuf (i-1) (List.tl l)
let rec listpref i l = if i<=0 then [] else List.hd l :: listpref (i-1) (List.tl l)
let rec split3 l =
List.fold_right (fun (e1,e2,e3) (a,b,c) -> (e1::a),(e2::b),(e3::c)) l ([],[],[])
let mkthesort = mkProp (* would like to put Type here, but with which index? *)
(* this is the prefix used to name equality hypothesis generated by
case analysis*)
let equality_hyp_string = "_eg_"
(* bug de refine: on doit ssavoir sur quelle hypothese on se trouve. valeur
initiale au debut de l'appel a la fonction proofPrinc: 1. *)
let nthhyp = ref 1
let debug i = prstr ("DEBUG "^ string_of_int i ^"\n")
let pr2constr = (fun c1 c2 -> prconstr c1; prstr " <---> "; prconstr c2)
(* Operations on names *)
let id_of_name = function
Anonymous -> id_of_string "H"
| Name id -> id;;
let string_of_name nme = string_of_id (id_of_name nme)
(*end debugging *)
(* Interpretation of constr's *)
let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
(*s specific manipulations on constr *)
let lift1_leqs leq=
List.map
(function (r,(typofg,g,d))
-> lift 1 r, (lift 1 typofg, lift 1 g , lift 1 d)) leq
let lift1_relleqs leq= List.map (function (r,x) -> lift 1 r,x) leq
(* WARNING: In the types, we don't lift the rels in the type. This is
intentional. Use with care. *)
let lift1_lvars lvars= List.map
(function x,(nme,c) -> lift 1 x, (nme, (*lift 1*) c)) lvars
let pop1_levar levars = List.map (function ev,tev -> ev, popn 1 tev) levars
let rec add_n_dummy_prod t n =
if n<=0 then t
else add_n_dummy_prod (mkNamedProd (id_of_string "DUMMY") mkthesort t) (n-1)
(* [add_lambdas t gl [csr1;csr2...]] returns [[x1:type of csr1]
[x2:type of csr2] t [csr <- x1 ...]], names of abstracted variables
are not specified *)
let rec add_lambdas t gl lcsr =
match lcsr with
| [] -> t
| csr::lcsr' ->
let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
lambda_id hyp_csr hyptyp (add_lambdas t gl lcsr')
(* [add_pis t gl [csr1;csr2...]] returns ([x1] :type of [csr1]
[x2]:type of csr2) [t]*)
let rec add_pis t gl lcsr =
match lcsr with
| [] -> t
| csr::lcsr' ->
let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
prod_id hyp_csr hyptyp (add_pis t gl lcsr')
let mkProdEg teq eql eqr concl =
mkProd (name_of_string "eg", mkEq teq eql eqr, lift 1 concl)
let eqs_of_beqs x =
List.map (function (_,(a,b,c)) -> (Anonymous, mkEq a b c)) x
let rec eqs_of_beqs_named_aux s i l =
match l with
| [] -> []
| (r,(a,b,c))::l' ->
(Name(id_of_string (s^ string_of_int i)), mkEq a b c)
::eqs_of_beqs_named_aux s (i-1) l'
let eqs_of_beqs_named s l = eqs_of_beqs_named_aux s (List.length l) l
let rec patternify ltypes c nme =
match ltypes with
| [] -> c
| (mv,t)::ltypes' ->
let c'= substitterm 0 mv (mkRel 1) c in
let tlift = lift (List.length ltypes') t in
let res =
patternify ltypes' (mkLambda (newname_append nme "rec", tlift, c')) nme in
res
let rec npatternify ltypes c =
match ltypes with
| [] -> c
| (mv,nme,t)::ltypes' ->
let c'= substitterm 0 mv (mkRel 1) c in
let tlift = lift (List.length ltypes') t in
let res =
npatternify ltypes' (mkLambda (newname_append nme "", tlift, c')) in
res
(* fait une application (c m1 m2...mn, où mi est une evar, on rend également
la liste des evar munies de leur type) *)
let rec apply_levars c lmetav =
match lmetav with
| [] -> [],c
| (i,typ) :: lmetav' ->
let levars,trm = apply_levars c lmetav' in
let exkey = mknewexist() in
((exkey,typ)::levars), applistc trm [mkEvar exkey]
(* EXPERIMENT le refine est plus long si on met un cast:
((exkey,typ)::levars), mkCast ((applistc trm [mkEvar exkey]),typ) *)
let prod_change_concl c newconcl =
let lv,_ = decompose_prod c in prod_it newconcl lv
let lam_change_concl c newconcl =
let lv,_ = decompose_prod c in lam_it newconcl lv
let rec mkAppRel c largs n =
match largs with
| [] -> c
| arg::largs' ->
let newc = mkApp (c,[|(mkRel n)|]) in mkAppRel newc largs' (n-1)
let applFull c typofc =
let lv,t = decompose_prod typofc in
let ltyp = List.map fst lv in
let res = mkAppRel c ltyp (List.length ltyp) in
res
(* Take two terms with same structure and return a map of deBruijn from the
first to the second. Only DeBruijn should be different between the two
terms. *)
let rec build_rel_map typ type_of_b =
match (kind_of_term typ), (kind_of_term type_of_b) with
Evar _ , Evar _ -> Smap.empty
| Const c1, Const c2 when c1=c2 -> Smap.empty
| Ind c1, Ind c2 when c1=c2 -> Smap.empty
| Rel i, Rel j when i=j -> Smap.empty
| Rel i, Rel j -> Smap.add typ type_of_b Smap.empty
| Prod (name,c1,c2), Prod (nameb,c1b,c2b) ->
let map1 = build_rel_map c1 c1b in
let map2 = build_rel_map (pop c2) (pop c2b) in
merge_smap map1 map2
| App (f,args), App (fb,argsb) when Array.length args = Array.length argsb ->
build_rel_map_list (Array.to_list args) (Array.to_list argsb)
| _,_ -> failwith ("Could not generate case annotation. "^
"Incompatibility between annotation and actual type")
and build_rel_map_list ltyp ltype_of_b =
List.fold_left2 (fun a b c -> merge_smap a (build_rel_map b c))
Smap.empty ltyp ltype_of_b
(*s Use (and proof) of the principle *)
(* This is the type of the argument of [proofPrinc] *)
type mimickinfo =
{
concl: constr; (* conclusion voulue, cad (xi:ti)gl, ou gl est le but a
prouver, et xi:ti correspondent aux arguments donnés à
la tactique. On enlèvera un produit à chaque fois
qu'on rencontrera un binder, sans lift ou pop.
Initialement: une seule conclusion, puis specifique à
chaque branche. *)
absconcl: constr array; (* conclusions patternisées pour pouvoir être
appliquées = un predicat pour chaque fixpt
mutuel. *)
mimick: constr; (* le terme qu'on imite. On plongera dedans au fur et
à mesure, sans lift ni pop. *)
env: env; (* The global typing environment, we will add thing in it when
going inside the term (push_rel, push_rec_types) *)
sigma: Evd.evar_map;
nmefonc: constr array; (* la constante correspondant à la fonction
appelée, permet de remplacer les appels
recursifs par des appels à la constante
correspondante (non pertinent (et inutile) si
on permet l'appel de la tactique sur une terme
donné directement (au lieu d'une constante
comme pour l'instant)). *)
fonc: int * int; (* bornes des indices des variable correspondant aux
appels récursifs (plusieurs car fixp. mutuels),
utile pour reconnaître les appels récursifs
(ATTENTION: initialement vide, reste vide tant qu'on
n'est pas dans un fix). *)
doeqs: bool; (* this reference is to toggle building of equalities during
the building of the principle (default is true) *)
fix: bool; (* did I already went through a fix or case constr? lambdas
found before a case or a fix are treated as parameters of
the induction principle *)
lst_vars: (constr*(name*constr)) list ; (* Variables rencontrées jusque là *)
lst_eqs: (Term.constr * (Term.constr * Term.constr * Term.constr)) list ;
(* liste d'équations engendrées au cours du
parcours, cette liste grandit à chaque
case, et il faut lifter le tout à chaque
binder *)
lst_recs: constr list ; (* appels récursifs rencontrés jusque là *)
}
(* This is the return type of [proofPrinc] *)
type 'a funind = (* 'A = CONTR OU CONSTR ARRAY *)
{
princ:'a; (* le (ou les) principe(s) demandé(s), il contient des meta
variables représentant soit des trous à prouver plus tard,
soit les conclusions à compléter avant de rendre le terme
(suivant qu'on utilise le principe pour faire refine ou
functional scheme). Il y plusieurs conclusions si plusieurs
fonction mutuellement récursives) voir la suite. *)
evarlist: (constr*Term.types) list; (* [(ev1,tev1);(ev2,tev2)...]]
l'ensemble des meta variables
correspondant à des trous. [evi]
est la meta variable, [tevi] est
son type. *)
hypnum: (int*int*int) list; (* [[(in,jn,kn)...]] sont les nombres
respectivement de variables, d'équations,
et d'hypothèses de récurrence pour le but
n. Permet de faire le bon nombre d'intros
et des rewrite au bons endroits dans la
suite. *)
mutfixmetas: constr array ; (* un tableau de meta variables correspondant
à chacun des prédicats mutuellement
récursifs construits. *)
conclarray: types array; (* un tableau contenant les conclusions
respectives de chacun des prédicats
mutuellement récursifs. Permet de finir la
construction du principe. *)
params:(constr*name*constr) list; (* [[(metavar,param,tparam)..]] la
liste des paramètres (les lambdas
au-dessus du fix) du fixpoint si
fixpoint il y a, le paramètre est
une meta var, dont on stocke le nom
et le type. TODO: utiliser la
structure adequat? *)
}
let empty_funind_constr =
{
princ = mkProp;
evarlist = [];
hypnum = [];
mutfixmetas = [||];
conclarray = [||];
params = []
}
let empty_funind_array =
{ empty_funind_constr with
princ = [||];
}
(* Replace the calls to the function (recursive calls) by calls to the
corresponding constant *)
let replace_reccalls mi b =
let d,f = mi.fonc in
let res = ref b in
let _ = for i = d to f do
res := substitterm 0 (mkRel i) mi.nmefonc.(f-i) !res done in
!res
(* collects all information of match branches stored in [l] *)
let rec collect_cases l =
match l with
| [||] -> empty_funind_array
| arr ->
let x = arr.(0) in
let resrec = collect_cases (Array.sub arr 1 (Array.length arr - 1)) in
{ x with
princ= Array.append [|x.princ|] resrec.princ;
evarlist = x.evarlist@resrec.evarlist;
hypnum = x.hypnum@resrec.hypnum;
}
let collect_pred l =
let l1,l2,l3 = split3 l in
Array.of_list l1 , Array.of_list l2 , Array.of_list l3
(* [build_pred n tarr] builds the right predicates for each element of [tarr]
(of type: [type array] of size [n]). Return the list of triples:
(?i ,
fun (x1:t1) ... (xn:tn) => (?i x1...xn) ,
forall (x1:t1) ... (xn:tn), (?i x1...xn)),
where ti's are deduced from elements of tarr, which are of the form:
t1 -> t2 -> ... -> tn -> <nevermind>. *)
let rec build_pred n tarr =
if n >= Array.length tarr (* iarr *) then []
else
let ftyp = Array.get tarr n in
let gl = mknewmeta() in
let gl_app = applFull gl ftyp in
let pis = prod_change_concl ftyp gl_app in
let gl_abstr = lam_change_concl ftyp gl_app in
(gl,gl_abstr,pis):: build_pred (n+1) tarr
let heq_prefix = "H_eq_"
type kind_of_hyp = Var | Eq (*| Rec*)
(* the main function, build the principle by exploring the term and reproduce
the same structure. *)
let rec proofPrinc mi: constr funind =
match kind_of_term mi.mimick with
(* Fixpoint: we reproduce the Fix, fonc becomes (1,nbofmutf) to point on
the name of recursive calls *)
| Fix((iarr,i),(narr,tarr,carr)) ->
(* We construct the right predicates for each mutual fixpt *)
let evararr,newabsconcl,pisarr = collect_pred (build_pred 0 tarr) in
let newenv = push_rec_types (narr,tarr,carr) mi.env in
let anme',aappel_rec,llevar,llposeq =
collect_fix mi 0 iarr narr carr pisarr newabsconcl newenv in
let anme = Array.map (fun nme -> newname_append nme "_ind") anme' in
{
princ = mkFix((iarr,i),(anme, pisarr,aappel_rec));
evarlist= pop1_levar llevar; (* llevar are put outside the fix, so we pop 1 *)
hypnum = llposeq;
mutfixmetas = evararr;
conclarray = pisarr;
params = []
}
(* <pcase> Cases b of arrPt end.*)
| Case (cinfo, pcase, b, arrPt) ->
let prod_pcase,_ = decompose_lam pcase in
let _nmeb,_ = List.hd prod_pcase in
let newb'= apply_leqtrpl_t b mi.lst_eqs in
let type_of_b = Typing.type_of mi.env mi.sigma b in
(* Replace the recursive calls to the function by calls to the constant *)
let newb = replace_reccalls mi newb' in
let cases = collect_cases (Array.mapi (fold_proof mi b type_of_b newb) arrPt) in
(* the match (case) annotation must be transformed, see [build_pcase] below *)
let newpcase = build_pcase mi pcase b type_of_b newb in
let trm' = mkCase (cinfo,newpcase,newb, cases.princ) in
{ cases with
princ = if mi.doeqs then mkApp (trm',[|(mkRefl type_of_b newb)|]) else trm';
params = [] (* FIX: fix parms here (fixpt inside a match)*)
}
| Lambda(nme, typ, cstr) ->
let _, _, cconcl = destProd mi.concl in
let d,f=mi.fonc in
let newenv = push_rel (nme,None,typ) mi.env in
let newlst_var = (* if this lambda is a param, then don't add it here *)
if mi.fix then (mkRel 1,(nme,typ)) :: lift1_lvars mi.lst_vars
else (*(mkRel 1,(nme,typ)) :: *) lift1_lvars mi.lst_vars in
let newmi = {mi with concl=cconcl; mimick=cstr; env=newenv;
fonc = (if d > 0 then d+1 else 0) , (if f > 0 then f+1 else 0);
lst_vars = newlst_var ; lst_eqs = lift1_leqs mi.lst_eqs;
lst_recs = lift1L mi.lst_recs} in
let resrec = proofPrinc newmi in
(* are we inside a fixpoint or a case? then this is a normal lambda *)
if mi.fix
then { resrec with princ = mkLambda (nme,typ,resrec.princ) ; params = [] }
else (* otherwise this is a parameter *)
let metav = mknewmeta() in
let substmeta t = popn 1 (substitterm 0 (mkRel 1) metav t) in
{ resrec with
princ = substmeta resrec.princ;
evarlist = List.map (fun (ev,tev) -> ev, substmeta tev) resrec.evarlist;
conclarray = Array.map substmeta resrec.conclarray;
params = (metav,nme,typ) :: resrec.params
}
| LetIn(nme,cstr1, typ, cstr) ->
failwith ("I don't deal with let ins yet. "^
"Please expand them before applying this function.")
| u ->
let varrels = List.rev (List.map fst mi.lst_vars) in
let varnames = List.map snd mi.lst_vars in
let nb_vars = List.length varnames in
let nb_eqs = List.length mi.lst_eqs in
let _eqrels = List.map fst mi.lst_eqs in
(* [terms_recs]: appel rec du fixpoint, On concatène les appels recs
trouvés dans les let in et les Cases avec ceux trouves dans u (ie
mi.mimick). *)
(* TODO: il faudra gérer plusieurs pt fixes imbriqués ? *)
let terms_recs = mi.lst_recs @ hdMatchSub_cpl mi.mimick mi.fonc in
(*c construction du terme: application successive des variables, des
egalites et des appels rec, a la variable existentielle correspondant a
l'hypothese de recurrence en cours. *)
(* d'abord, on fabrique les types des appels recursifs en replacant le nom
de des fonctions par les predicats dans [terms_recs]: [(f_i t u v)]
devient [(P_i t u v)] *)
(* TODO optimiser ici: *)
let appsrecpred = exchange_reli_arrayi_L mi.absconcl mi.fonc terms_recs in
let typeofhole'' = prod_it_anonym_lift mi.concl appsrecpred in
let typeofhole = prodn nb_vars varnames typeofhole'' in
(* Un bug de refine m'oblige à mettre ici un H (meta variable à ce point,
mais remplacé par H avant le refine) au lieu d'un '?', je mettrai les
'?' à la fin comme ça [(([H1,H2,H3...] ...) ? ? ?)] *)
let newmeta = mknewmeta() in
let concl_with_var = applistc newmeta varrels in
let conclrecs = applistc concl_with_var terms_recs in
{ empty_funind_constr with
princ = conclrecs;
evarlist = [ newmeta , typeofhole ];
hypnum = [ nb_vars , List.length terms_recs , nb_eqs ];
conclarray = mi.absconcl;
}
(* C'est un peu compliqué ici: en cas de type inductif vraiment dépendant
l'annotation de type du case [pcase] contient des lambdas supplémentaires
en tête. Je les récupère dans la variable [suppllam_pcase]. Le problème est
que la conclusion de l'annotation du nouveauacse doit faire référence à ces
variables plutôt qu'à celle de l'exterieur. Ce qui suit permet de changer
les reference de newpcase' pour pointer vers les lambda du piquant. On
procède comme suit: on repère les rels qui pointent à l'interieur de
l'annotation dans la fonction initiale et on les relie à celle du type
voulu pour le case, pour ça ([build_rel_map]) on parcourt en même temps le
dernier lambda du piquant ([typ]) (qui contient le type de l'argument du
case) et le type attendu pour le case ([type_of_b]) et on construit un
map. Ensuite on remplace les rels correspondant dans la preuve construite
en suivant le map. *)
and build_pcase mi pcase b type_of_b newb =
let prod_pcase,_ = decompose_lam pcase in
let nme,typ = List.hd prod_pcase in
(* je remplace b par rel1 (apres avoir lifte un coup) dans la future
annotation du futur case: ensuite je mettrai un lambda devant *)
let typeof_case'' = substitterm 0 (lift 1 b) (mkRel 1) (lift 1 mi.concl) in
let suppllam_pcase = List.tl prod_pcase in
let suppllam_pcasel = List.length suppllam_pcase in
let rel_smap =
if suppllam_pcasel=0 then Smap.empty else (* FIX: is this test necessary ? *)
build_rel_map (lift suppllam_pcasel type_of_b) typ in
let newpcase''' =
Smap.fold (fun e e' acc -> substitterm 0 e (lift 1 e') acc)
rel_smap typeof_case'' in
let neweq = mkEq (lift (suppllam_pcasel + 1) type_of_b)
(lift (suppllam_pcasel + 1) newb) (mkRel 1) in
let newpcase'' =
if mi.doeqs
then mkProd (name_of_string "eg", neweq, lift 1 newpcase''')
else newpcase''' in
(* construction du dernier lambda du piquant. *)
let newpcase' = mkLambda (newname_append nme "_ind" ,typ, newpcase'') in
(* ajout des lambdas supplémentaires (type dépendant) du piquant. *)
lamn suppllam_pcasel suppllam_pcase newpcase'
(* [fold_proof mi b typeofb newb l n] rend le resultat de l'appel recursif sur
cstr (correpsondant au ième elt de [arrPt] ci-dessus et donc au ième
constructeur de [typeofb]), appele avec les bons arguments: [mi.concl]
devient [(DUMMY1:t1;...;DUMMY:tn)concl'], ou [n] est le nombre d'arguments
du constructeur considéré, et [concl'] est [mi.concl] ou l'on a réécrit [b]
en ($c_n$ [rel1]...). *)
and fold_proof mi b type_of_b newb i cstr =
let new_lst_recs = mi.lst_recs @ hdMatchSub_cpl b mi.fonc in
(* mise a jour de concl pour l'interieur du case, concl'= concl[b <- C x3
x2 x1... ], sans quoi les annotations ne sont plus coherentes *)
let cstr_appl,nargs = nth_dep_constructor type_of_b i in
let concl'' =
substitterm 0 (lift nargs b) cstr_appl (lift nargs mi.concl) in
let neweq = mkEq type_of_b newb (popn nargs cstr_appl) in
let concl_dummy = add_n_dummy_prod concl'' nargs in
let lsteqs_rew = apply_eq_leqtrpl mi.lst_eqs neweq in
let new_lsteqs = (mkRel (-nargs),(type_of_b,newb, popn nargs cstr_appl))::lsteqs_rew in
let a',a'' = decompose_lam_n nargs cstr in
let newa'' =
if mi.doeqs
then mkLambda (name_of_string heq_prefix,lift nargs neweq,lift 1 a'')
else a'' in
let newmimick = lamn nargs a' newa'' in
let b',b'' = decompose_prod_n nargs concl_dummy in
let newb'' =
if mi.doeqs
then mkProd (name_of_string heq_prefix,lift nargs neweq,lift 1 b'')
else b'' in
let newconcl = prodn nargs b' newb'' in
let newmi = {mi with mimick=newmimick; concl=newconcl; fix=true;
lst_eqs= new_lsteqs; lst_recs = new_lst_recs} in
proofPrinc newmi
and collect_fix mi n iarr narr carr pisarr newabsconcl newenv =
if n >= Array.length iarr then [||],[||],[],[]
else
let nme = Array.get narr n in
let c = Array.get carr n in
(* rappelle sur le sous-terme, on ajoute un niveau de
profondeur (lift) parce que Fix est un binder. *)
let newmi = {mi with concl=(pisarr.(n)); absconcl=newabsconcl;
mimick=c; fonc=(1,((Array.length iarr)));env=newenv;fix=true;
lst_vars=lift1_lvars mi.lst_vars; lst_eqs=lift1_leqs mi.lst_eqs;
lst_recs= lift1L mi.lst_recs;} in
let resrec = proofPrinc newmi in
let lnme,lappel_rec,llevar,llposeq =
collect_fix mi (n+1) iarr narr carr pisarr newabsconcl newenv in
Array.append [|nme|] lnme , Array.append [|resrec.princ|] lappel_rec
, (resrec.evarlist@llevar) , (resrec.hypnum@llposeq)
let mkevarmap_aux ex = let x,y = ex in (mkevarmap_from_listex x),y
(* TODO: deal with any term, not only a constant. *)
let interp_fonc_tacarg fonctac gl =
(* [fonc] is the constr corresponding to fontact not unfolded,
if [fonctac] is a (qualified) name then this is a [const] ?. *)
(* let fonc = constr_of_Constr fonctac in *)
(* TODO: replace the [with _ -> ] by something more precise in
the following. *)
(* [def_fonc] is the definition of fonc. TODO: We should do this only
if [fonc] is a const, and take [fonc] otherwise.*)
try fonctac, pf_const_value gl (destConst fonctac)
with _ -> failwith ("don't know how to deal with this function "
^"(DEBUG:is it a constante?)")
(* [invfun_proof fonc def_fonc gl_abstr pis] builds the principle,
following the shape of [def_fonc], [fonc] is the constant
corresponding to [def_func] (or a reduced form of it ?), gl_abstr and
pis are the goal to be proved, of the form [x,y...]g and (x.y...)g.
This function calls the big function proofPrinc. *)
let invfun_proof fonc def_fonc gl_abstr pis env sigma =
let mi = {concl=pis; absconcl=gl_abstr; mimick=def_fonc; env=env;
sigma=sigma; nmefonc=fonc; fonc=(0,0); doeqs=true; fix=false ;
lst_vars = []; lst_eqs = []; lst_recs = []} in
proofPrinc mi
(* Do intros [i] times, then do rewrite on all introduced hyps which are called
like [heq_prefix], FIX: have another filter than the name. *)
let rec iterintro i =
if i<=0 then tclIDTAC else
tclTHEN
(tclTHEN
intro
(iterintro (i-1)))
(fun gl ->
(tclREPEAT
(tclNTH_HYP i
(fun hyp ->
let hypname = (string_of_id (destVar hyp)) in
let sub =
try String.sub hypname 0 (String.length heq_prefix)
with _ -> "" (* different than [heq_prefix] *) in
if sub=heq_prefix then rewriteLR hyp else tclFAIL 0 (str "Cannot rewrite"))
)) gl)
(*
(fun hyp gl ->
let _ = prstr ("nthhyp= "^ string_of_int i) in
if isConst hyp && ((name_of_const hyp)==heq_prefix) then
let _ = prstr "YES\n" in
rewriteLR hyp gl
else
let _ = prstr "NO\n" in
tclIDTAC gl)
*)
(* [invfun_basic C listargs_ids gl dorew lposeq] builds the tactic
which:
\begin{itemize}
\item Do refine on C (the induction principle),
\item try to Clear listargs_ids
\item if boolean dorew is true, then intro all new hypothesis, and
try rewrite on those hypothesis that are equalities.
\end{itemize}
*)
let invfun_basic open_princ_proof_applied listargs_ids gl dorew lposeq =
(tclTHEN_i
(tclTHEN
(tclTHEN
(* Refine on the right term (following the sheme of the
given function) *)
(fun gl -> refine open_princ_proof_applied gl)
(* Clear the hypothesis given as arguments of the tactic
(because they are generalized) *)
(tclTHEN simpl_in_concl (tclTRY (clear listargs_ids))))
(* Now we introduce the created hypothesis, and try rewrite on
equalities due to case analysis *)
(fun gl -> (tclIDTAC gl)))
(fun i gl ->
if not dorew then tclIDTAC gl
else
(* d,m,f correspond respectively to vars, induction hyps and
equalities*)
let d,m,f = List.nth lposeq (i-1) in
tclTHEN (iterintro (d)) (tclDO m (tclTRY intro)) gl)
)
gl
(* This function trys to reduce instanciated arguments, provided they
are of the form [(C t u v...)] where [C] is a constructor, and
provided that the argument is not the argument of a fixpoint (i.e. the
argument corresponds to a simple lambda) . *)
let rec applistc_iota cstr lcstr env sigma =
match lcstr with
| [] -> cstr,[]
| arg::lcstr' ->
let arghd =
if isApp arg then let x,_ = destApp arg in x else arg in
if isConstruct arghd (* of the form [(C ...)]*)
then
applistc_iota (Tacred.nf env sigma (nf_beta (applistc cstr [arg])))
lcstr' env sigma
else
try
let nme,typ,suite = destLambda cstr in
let c, l = applistc_iota suite lcstr' env sigma in
mkLambda (nme,typ,c), arg::l
with _ -> cstr,arg::lcstr' (* the arg does not correspond to a lambda*)
(* TODO: ne plus mettre les sous-but à l'exterieur, mais à l'intérieur (le bug
de refine est normalement resolu). Ca permettra 2 choses: d'une part que
les preuves soient plus simple, et d'autre part de fabriquer un terme de
refine qui pourra s'aapliquer SANS FAIRE LES INTROS AVANT, ce qui est bcp
mieux car fonctionne comme induction et plus comme inversion (pas de perte
de connexion entre les hypothèse et les variables). *)
(*s Tactic that makes induction and case analysis following the shape
of a function (idf) given with arguments (listargs) *)
let invfun c l dorew gl =
(* \begin{itemize}
\item [fonc] = the constant corresponding to the function
(necessary for equalities of the form [(f x1 x2 ...)=...] where
[f] is the recursive function).
\item [def_fonc] = body of the function, where let ins have
been expanded. *)
let fonc, def_fonc' = interp_fonc_tacarg c gl in
let def_fonc'',listargs' =
applistc_iota def_fonc' l (pf_env gl) (project gl) in
let def_fonc = expand_letins def_fonc'' in
(* quantifies on previously generalized arguments.
[(x1:T1)...g[arg1 <- x1 ...]] *)
let pis = add_pis (pf_concl gl) gl listargs' in
(* princ_proof builds the principle *)
let _ = resetmeta() in
let pr = invfun_proof [|fonc|] def_fonc [||] pis (pf_env gl) (project gl) in
(* Generalize the goal. [[x1:T1][x2:T2]... g[arg1 <- x1 ...]]. *)
let gl_abstr' = add_lambdas (pf_concl gl) gl listargs' in
(* apply parameters immediately *)
let gl_abstr =
applistc gl_abstr' (List.map (fun (x,y,z) -> x) (List.rev pr.params)) in
(* we apply args of the fix now, the parameters will be applied later *)
let princ_proof_applied_args =
applistc pr.princ (listsuf (List.length pr.params) listargs') in
(* parameters are still there so patternify must not take them -> lift *)
let princ_proof_applied_lift =
lift (List.length pr.evarlist) princ_proof_applied_args in
let princ_applied_hyps'' = patternify (List.rev pr.evarlist)
princ_proof_applied_lift (Name (id_of_string "Hyp")) in
(* if there was a fix, we will not add "Q" as in funscheme, so we make a pop,
TODO: find were we made the lift in proofPrinc instead and supress it here,
and add lift in funscheme. *)
let princ_applied_hyps' =
if Array.length pr.mutfixmetas > 0 then popn 1 princ_applied_hyps''
else princ_applied_hyps'' in
(* if there is was fix, we have to replace the meta representing the
predicate of the goal by the abstracted goal itself. *)
let princ_applied_hyps =
if Array.length pr.mutfixmetas > 0 then(* mutual Fixpoint not treated in the tactic*)
(substit_red 0 (pr.mutfixmetas.(0)) gl_abstr princ_applied_hyps')
else princ_applied_hyps' (* No Fixpoint *) in
let _ = prNamedConstr "princ_applied_hyps" princ_applied_hyps in
(* Same thing inside levar *)
let newlevar' =
if Array.length pr.mutfixmetas > 0 then(* mutual Fixpoint not treated in the tactic*)
List.map (fun (x,y) -> x,substit_red 0 (pr.mutfixmetas.(0)) gl_abstr y) pr.evarlist
else pr.evarlist
in
(* replace params metavar by real args *)
let rec replace_parms lparms largs t =
match lparms, largs with
[], _ -> t
| ((p,_,_)::lp), (a::la) -> let t'= substitterm 0 p a t in replace_parms lp la t'
| _, _ -> error "problem with number of args." in
let princ_proof_applied = replace_parms pr.params listargs' princ_applied_hyps in
let _ = prNamedLConstr "levar:" (List.map fst newlevar') in
let _ = prNamedLConstr "levar types:" (List.map snd newlevar') in
let _ = prNamedConstr "princ_proof_applied" princ_proof_applied in
(* replace also in levar *)
let newlevar =
List.rev (List.map (fun (x,y) -> x, replace_parms pr.params listargs' y) newlevar') in
(*
(* replace params metavar by abstracted variables *)
let princ_proof_params = npatternify (List.rev pr.params) princ_applied_hyps in
(* we apply now the real parameters *)
let princ_proof_applied =
applistc princ_proof_params (listpref (List.length pr.params) listargs') in
*)
let princ_applied_evars = apply_levars princ_proof_applied newlevar in
let open_princ_proof_applied = princ_applied_evars in
let _ = prNamedConstr "princ_applied_evars" (snd princ_applied_evars) in
let _ = prNamedLConstr "evars" (List.map snd (fst princ_applied_evars)) in
let listargs_ids = List.map destVar (List.filter isVar listargs') in
(* debug: impression du but*)
let lgl = Evd.to_list (sig_sig gl) in
let _ = prNamedLConstr "\ngl= " (List.map (fun x -> (snd x).evar_concl) lgl) in
let _ = prstr "fin gl \n\n" in
invfun_basic (mkevarmap_aux open_princ_proof_applied) listargs_ids
gl dorew pr.hypnum
(* function must be a constant, all arguments must be given. *)
let invfun_verif c l dorew gl =
if not (isConst c) then error "given function is not a constant"
else
let x,_ = decompose_prod (pf_type_of gl c) in
if List.length x = List.length l then
try invfun c l dorew gl
with UserError (x,y) -> raise (UserError (x,y))
else error "wrong number of arguments for the function"
(* Construction of the functional scheme. *)
let buildFunscheme fonc mutflist =
let def_fonc = expand_letins (def_of_const fonc) in
let ftyp = type_of (Global.env ()) Evd.empty fonc in
let _ = resetmeta() in
let gl = mknewmeta() in
let gl_app = applFull gl ftyp in
let pis = prod_change_concl ftyp gl_app in
(* Here we call the function invfun_proof, that effectively
builds the scheme *)
(* let princ_proof,levar,_,evararr,absc,parms = *)
let _ = prstr "Recherche du principe... lancement de invfun_proof\n" in
let pr = invfun_proof mutflist def_fonc [||] pis (Global.env()) Evd.empty in
(* parameters are still there (unboud rel), and patternify must not take them
-> lift*)
let princ_proof_lift = lift (List.length pr.evarlist) pr.princ in
let princ_proof_hyps =
patternify (List.rev pr.evarlist) princ_proof_lift (Name (id_of_string "Hyp")) in
let rec princ_replace_metas ev abs i t =
if i>= Array.length ev then t
else (* fix? *)
princ_replace_metas ev abs (i+1)
(mkLambda (
(Name (id_of_string ("Q"^(string_of_int i)))),
prod_change_concl (lift 0 abs.(i)) mkthesort,
(substitterm 0 ev.(i) (mkRel 1) (lift 0 t))))
in
let rec princ_replace_params params t =
List.fold_left (
fun acc (ev,nam,typ) ->
mkLambda (Name (id_of_name nam) , typ,
substitterm 0 ev (mkRel 1) (lift 0 acc)))
t (List.rev params) in
if Array.length pr.mutfixmetas = 0 (* Is there a Fixpoint? *)
then (* No Fixpoint *)
princ_replace_params pr.params (mkLambda ((Name (id_of_string "Q")),
prod_change_concl ftyp mkthesort,
(substitterm 0 gl (mkRel 1) princ_proof_hyps)))
else (* there is a fix -> add parameters + replace metas *)
let princ_rpl =
princ_replace_metas pr.mutfixmetas pr.conclarray 0 princ_proof_hyps in
princ_replace_params pr.params princ_rpl
(* Declaration of the functional scheme. *)
let declareFunScheme f fname mutflist =
let _ = prstr "Recherche du perincipe...\n" in
let id_to_cstr id =
try constr_of_id (Global.env()) id
with
Not_found -> error (string_of_id id ^ " not found in the environment") in
let flist = if mutflist=[] then [f] else mutflist in
let fcstrlist = Array.of_list (List.map id_to_cstr flist) in
let idf = id_to_cstr f in
let scheme = buildFunscheme idf fcstrlist in
let _ = prstr "Principe:" in
let _ = prconstr scheme in
let ce = {
const_entry_body = scheme;
const_entry_type = None;
const_entry_opaque = false;
const_entry_boxed = true } in
let _= ignore (declare_constant fname (DefinitionEntry ce,IsDefinition Scheme)) in
()
TACTIC EXTEND functional_induction
[ "old" "functional" "induction" constr(c) ne_constr_list(l) ]
-> [ invfun_verif c l true ]
END
VERNAC COMMAND EXTEND FunctionalScheme
[ "Old" "Functional" "Scheme" ident(na) ":=" "Induction" "for"
ident(c) "with" ne_ident_list(l) ]
-> [ declareFunScheme c na l ]
| [ "Old" "Functional" "Scheme" ident(na) ":=" "Induction" "for" ident (c) ]
-> [ declareFunScheme c na [] ]
END
(*
*** Local Variables: ***
*** compile-command: "make -C ../.. contrib/funind/tacinv.cmo" ***
*** tuareg-default-indent:1 ***
*** tuareg-begin-indent:1 ***
*** tuareg-let-indent:1 ***
*** tuareg-match-indent:-1 ***
*** tuareg-try-indent:1 ***
*** tuareg-with-indent:1 ***
*** tuareg-if-then-else-inden:1 ***
*** fill-column: 78 ***
*** indent-tabs-mode: nil ***
*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v" ***
*** End: ***
*)
|