aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/funind/indfun_main.ml4
blob: 61f26d3011692c17bf39510e237165792605ef6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Term
open Names
open Pp
open Topconstr
open Indfun_common 
open Indfun
open Genarg
open Pcoq

let pr_binding prc = function
  | loc, Rawterm.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ cut () ++ prc c)
  | loc, Rawterm.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ cut () ++ prc c)

let pr_bindings prc prlc = function
  | Rawterm.ImplicitBindings l ->
      brk (1,1) ++ str "with" ++ brk (1,1) ++
      Util.prlist_with_sep spc prc l
  | Rawterm.ExplicitBindings l ->
      brk (1,1) ++ str "with" ++ brk (1,1) ++ 
        Util.prlist_with_sep spc (fun b -> str"(" ++ pr_binding prlc b ++ str")") l
  | Rawterm.NoBindings -> mt ()


let pr_with_bindings prc prlc (c,bl) =
  prc c ++ hv 0 (pr_bindings prc prlc bl)


let pr_fun_ind_using  prc prlc _ opt_c = 
  match opt_c with
    | None -> mt ()
    | Some c -> spc () ++ hov 2 (str "using" ++ spc () ++ pr_with_bindings prc prlc c)

ARGUMENT EXTEND fun_ind_using
  TYPED AS constr_with_bindings_opt
  PRINTED BY pr_fun_ind_using
| [ "using" constr_with_bindings(c) ] -> [ Some c ]
| [ ] -> [ None ]
END


TACTIC EXTEND newfuninv
   [ "functional" "inversion" ident(hyp) ident(fname) fun_ind_using(princl)] -> 
     [
       fun g -> 
	 let fconst = const_of_id fname in
	 let princ = 
	   match princl with 
	     | None -> 
		 let f_ind_id =  
		   (
		     Indrec.make_elimination_ident
		       fname 
		       (Tacticals.elimination_sort_of_goal g)
		   )
	       in
		 let princ = const_of_id f_ind_id in
		 princ
	     | Some princ -> destConst (fst princ)
	 in       
	 Invfun.invfun hyp fconst princ g
     ]
END


let pr_intro_as_pat prc _ _ pat = 
  match pat with 
    | Some pat -> spc () ++ str "as" ++ spc () ++ pr_intro_pattern pat
    | None -> mt ()


ARGUMENT EXTEND with_names TYPED AS intro_pattern_opt PRINTED BY pr_intro_as_pat
|   [ "as"  simple_intropattern(ipat) ] -> [ Some ipat ] 
| []  ->[ None ] 
END


let is_rec scheme_info = 
  let test_branche min acc (_,_,br) = 
    acc ||
      (let new_branche = Sign.it_mkProd_or_LetIn mkProp (fst (Sign.decompose_prod_assum br)) in 
      let free_rels_in_br = Termops.free_rels new_branche in 
      let max = min + scheme_info.Tactics.npredicates in 
      Util.Intset.exists (fun i -> i >= min && i< max) free_rels_in_br)
  in
  Util.list_fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches)


let choose_dest_or_ind scheme_info =
    if is_rec scheme_info
    then Tactics.new_induct
    else Tactics.new_destruct


TACTIC EXTEND newfunind
   ["functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] -> 
     [
       let pat = 
	 match pat with 
	   | None -> IntroAnonymous
	   | Some pat -> pat
       in
       let c = match cl with 
	 | [] -> assert false
	 | [c] -> c 
	 | c::cl -> applist(c,cl)
       in 
       let f,args = decompose_app c in 
       fun g -> 
	 let princ,bindings = 
	   match princl with 
	     | None -> (* No principle is given let's find the good one *)
		 let fname = 
		   match kind_of_term f with 
		     | Const c' -> 
			 id_of_label (con_label c') 
		     | _ -> Util.error "Must be used with a function" 
		 in
		 let princ_name = 
		   (
		     Indrec.make_elimination_ident
		       fname
		       (Tacticals.elimination_sort_of_goal g)
		   )
		 in
		 mkConst(const_of_id princ_name ),Rawterm.NoBindings
	     | Some princ -> princ 
	 in
	 let princ_type = Tacmach.pf_type_of g princ in 
	 let princ_infos = Tactics.compute_elim_sig princ_type in 
	 let args_as_induction_constr =
	   let c_list = 
	     if princ_infos.Tactics.farg_in_concl 
	     then [c] else [] 
	   in
	   List.map (fun c -> Tacexpr.ElimOnConstr c) (args@c_list) 
	 in 
	 let princ' = Some (princ,bindings) in 
	 let princ_vars = 
	   List.fold_right 
	     (fun a acc -> 
		try Idset.add (destVar a) acc
		with _ -> acc
	     )
	     args
	     Idset.empty
	 in
	 let old_idl = List.fold_right Idset.add (Tacmach.pf_ids_of_hyps g) Idset.empty in 
	 let old_idl = Idset.diff old_idl princ_vars in 
	 let subst_and_reduce g = 
	   let idl = 
	     Util.map_succeed 
	       (fun id -> 
		  if Idset.mem id old_idl then failwith "";
		  id 
	       )
	       (Tacmach.pf_ids_of_hyps g)
	   in 
	   let flag = 
	     Rawterm.Cbv
	       {Rawterm.all_flags 
		with Rawterm.rDelta = false; 		 
	       }
	   in
	   Tacticals.tclTHEN
	     (Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Equality.subst [id])) idl )
	     (Hiddentac.h_reduce flag Tacticals.allClauses)
	     g
	 in
	 Tacticals.tclTHEN
	   (choose_dest_or_ind 
	   princ_infos
	   args_as_induction_constr
	   princ'
	   pat)
	   subst_and_reduce
	   g
     ]
END


VERNAC ARGUMENT EXTEND rec_annotation2
  [ "{"  "struct" ident(id)  "}"] -> [ Struct id ]
| [ "{" "wf" constr(r) ident_opt(id) "}" ] -> [ Wf(r,id) ]
| [ "{" "measure" constr(r) ident_opt(id) "}" ] -> [ Mes(r,id) ] 
END


VERNAC ARGUMENT EXTEND binder2
    [ "(" ne_ident_list(idl) ":" lconstr(c)  ")"] ->
     [
       LocalRawAssum (List.map (fun id -> (Util.dummy_loc,Name id)) idl,c) ]
END


VERNAC ARGUMENT EXTEND rec_definition2
 [ ident(id)  binder2_list( bl)
     rec_annotation2_opt(annot) ":" lconstr( type_)
	":=" lconstr(def)] ->
    [let names = List.map snd (Topconstr.names_of_local_assums bl) in
     let check_one_name () =
       if List.length names > 1 then
         Util.user_err_loc
           (Util.dummy_loc,"Function",
            Pp.str "the recursive argument needs to be specified");
     in
     let check_exists_args an =
       try 
	 let id = match an with Struct id -> id | Wf(_,Some id) -> id | Mes(_,Some id) -> id | Wf(_,None) | Mes(_,None) -> failwith "check_exists_args" in 
	 (try ignore(Util.list_index (Name id) names - 1); annot
	  with Not_found ->  Util.user_err_loc
            (Util.dummy_loc,"Function",
             Pp.str "No argument named " ++ Nameops.pr_id id)
	 )
       with Failure "check_exists_args" ->  check_one_name ();annot
     in
     let ni =
       match annot with
         | None ->
             annot
	 | Some an ->
	     check_exists_args an
     in
     (id, ni, bl, type_, def) ]
      END


VERNAC ARGUMENT EXTEND rec_definitions2
| [ rec_definition2(rd) ] -> [ [rd] ]
| [ rec_definition2(hd) "with" rec_definitions2(tl) ] -> [ hd::tl ]
END


VERNAC COMMAND EXTEND Function
   ["Function" rec_definitions2(recsl)] ->
	[ do_generate_principle false  recsl]
END


VERNAC ARGUMENT EXTEND fun_scheme_arg
| [ ident(princ_name) ":=" "Induction" "for" ident(fun_name) "Sort" sort(s) ] -> [ (princ_name,fun_name,s) ] 
END 

VERNAC ARGUMENT EXTEND fun_scheme_args
| [ fun_scheme_arg(fa) ] -> [ [fa] ] 
| [ fun_scheme_arg(fa) "with" fun_scheme_args(fas) ] -> [fa::fas]
END 

VERNAC COMMAND EXTEND NewFunctionalScheme
   ["Functional" "Scheme" fun_scheme_args(fas) ] ->
    [
      try 
	Functional_principles_types.make_scheme fas
      with Functional_principles_types.No_graph_found -> 
	match fas with 
	  | (_,fun_name,_)::_ -> 
	      begin
		make_graph fun_name;
		try Functional_principles_types.make_scheme fas
		with Functional_principles_types.No_graph_found -> 
		  Util.error ("Cannot generate induction principle(s)")
	      end
	  | _ -> assert false (* we can only have non empty  list *)
    ]
END


VERNAC COMMAND EXTEND NewFunctionalCase
   ["Functional" "Case" fun_scheme_arg(fas) ] ->
    [
      Functional_principles_types.make_case_scheme fas
    ]
END


VERNAC COMMAND EXTEND GenerateGraph 
["Generate" "graph" "for" ident(c)] -> [ make_graph c ]
END