1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
open Names
open Pp
open Libnames
let mk_prefix pre id = id_of_string (pre^(string_of_id id))
let mk_rel_id = mk_prefix "R_"
let msgnl m =
()
let invalid_argument s = raise (Invalid_argument s)
(* let idtbl = Hashtbl.create 29 *)
(* let reset_name () = Hashtbl.clear idtbl *)
(* let fresh_id s = *)
(* try *)
(* let id = Hashtbl.find idtbl s in *)
(* incr id; *)
(* id_of_string (s^(string_of_int !id)) *)
(* with Not_found -> *)
(* Hashtbl.add idtbl s (ref (-1)); *)
(* id_of_string s *)
(* let fresh_name s = Name (fresh_id s) *)
(* let get_name ?(default="H") = function *)
(* | Anonymous -> fresh_name default *)
(* | Name n -> Name n *)
let fresh_id avoid s = Termops.next_global_ident_away true (id_of_string s) avoid
let fresh_name avoid s = Name (fresh_id avoid s)
let get_name avoid ?(default="H") = function
| Anonymous -> fresh_name avoid default
| Name n -> Name n
let array_get_start a =
try
Array.init
(Array.length a - 1)
(fun i -> a.(i))
with Invalid_argument "index out of bounds" ->
invalid_argument "array_get_start"
let id_of_name = function
Name id -> id
| _ -> raise Not_found
let locate ref =
let (loc,qid) = qualid_of_reference ref in
Nametab.locate qid
let locate_ind ref =
match locate ref with
| IndRef x -> x
| _ -> raise Not_found
let locate_constant ref =
match locate ref with
| ConstRef x -> x
| _ -> raise Not_found
let locate_with_msg msg f x =
try
f x
with
| Not_found -> raise (Util.UserError("", msg))
| e -> raise e
let filter_map filter f =
let rec it = function
| [] -> []
| e::l ->
if filter e
then
(f e) :: it l
else it l
in
it
let chop_rlambda_n =
let rec chop_lambda_n acc n rt =
if n == 0
then List.rev acc,rt
else
match rt with
| Rawterm.RLambda(_,name,t,b) -> chop_lambda_n ((name,t)::acc) (n-1) b
| _ -> raise (Util.UserError("chop_rlambda_n",str "chop_rlambda_n: Not enough Lambdas"))
in
chop_lambda_n []
let chop_rprod_n =
let rec chop_prod_n acc n rt =
if n == 0
then List.rev acc,rt
else
match rt with
| Rawterm.RProd(_,name,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b
| _ -> raise (Util.UserError("chop_rprod_n",str "chop_rprod_n: Not enough products"))
in
chop_prod_n []
let list_union_eq eq_fun l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.exists (eq_fun a) l2 then urec l else a::urec l
in
urec l1
let list_add_set_eq eq_fun x l =
if List.exists (eq_fun x) l then l else x::l
let const_of_id id =
let _,princ_ref =
qualid_of_reference (Libnames.Ident (Util.dummy_loc,id))
in
try Nametab.locate_constant princ_ref
with Not_found -> Util.error ("cannot find "^ string_of_id id)
let def_of_const t =
match (Term.kind_of_term t) with
Term.Const sp ->
(try (match (Global.lookup_constant sp) with
{Declarations.const_body=Some c} -> Declarations.force c
|_ -> assert false)
with _ -> assert false)
|_ -> assert false
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
(Coqlib.init_modules @ Coqlib.arith_modules) s;;
let constant sl s =
constr_of_reference
(Nametab.locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let find_reference sl s =
(Nametab.locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let eq = lazy(coq_constant "eq")
let refl_equal = lazy(coq_constant "refl_equal")
(* (\************************************************\) *)
(* (\* Should be removed latter *\) *)
(* (\* Comes from new induction (cf Pierre) *\) *)
(* (\************************************************\) *)
(* open Sign *)
(* open Term *)
(* type elim_scheme = *)
(* (\* { (\\* lists are in reverse order! *\\) *\) *)
(* (\* params: rel_context; (\\* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *\\) *\) *)
(* (\* predicates: rel_context; (\\* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *\\) *\) *)
(* (\* branches: rel_context; (\\* branchr,...,branch1 *\\) *\) *)
(* (\* args: rel_context; (\\* (xni, Ti_ni) ... (x1, Ti_1) *\\) *\) *)
(* (\* indarg: rel_declaration option; (\\* Some (H,I prm1..prmp x1...xni) if present, None otherwise *\\) *\) *)
(* (\* concl: types; (\\* Qi x1...xni HI, some prmis may not be present *\\) *\) *)
(* (\* indarg_in_concl:bool; (\\* true if HI appears at the end of conclusion (dependent scheme) *\\) *\) *)
(* (\* } *\) *)
(* let occur_rel n c = *)
(* let res = not (noccurn n c) in *)
(* res *)
(* let list_filter_firsts f l = *)
(* let rec list_filter_firsts_aux f acc l = *)
(* match l with *)
(* | e::l' when f e -> list_filter_firsts_aux f (acc@[e]) l' *)
(* | _ -> acc,l *)
(* in *)
(* list_filter_firsts_aux f [] l *)
(* let count_rels_from n c = *)
(* let rels = Termops.free_rels c in *)
(* let cpt,rg = ref 0, ref n in *)
(* while Util.Intset.mem !rg rels do *)
(* cpt:= !cpt+1; rg:= !rg+1; *)
(* done; *)
(* !cpt *)
(* let count_nonfree_rels_from n c = *)
(* let rels = Termops.free_rels c in *)
(* if Util.Intset.exists (fun x -> x >= n) rels then *)
(* let cpt,rg = ref 0, ref n in *)
(* while not (Util.Intset.mem !rg rels) do *)
(* cpt:= !cpt+1; rg:= !rg+1; *)
(* done; *)
(* !cpt *)
(* else raise Not_found *)
(* (\* cuts a list in two parts, first of size n. Size must be greater than n *\) *)
(* let cut_list n l = *)
(* let rec cut_list_aux acc n l = *)
(* if n<=0 then acc,l *)
(* else match l with *)
(* | [] -> assert false *)
(* | e::l' -> cut_list_aux (acc@[e]) (n-1) l' in *)
(* let res = cut_list_aux [] n l in *)
(* res *)
(* let exchange_hd_prod subst_hd t = *)
(* let hd,args= decompose_app t in mkApp (subst_hd,Array.of_list args) *)
(* let compute_elim_sig elimt = *)
(* (\* conclusion is the final (Qi ...) *\) *)
(* let hyps,conclusion = decompose_prod_assum elimt in *)
(* (\* ccl is conclusion where Qi (that is rel <something>) is replaced *)
(* by a constant (Prop) to avoid it being counted as an arg or *)
(* parameter in the following. *\) *)
(* let ccl = exchange_hd_prod mkProp conclusion in *)
(* (\* indarg is the inductive argument if it exists. If it exists it is *)
(* the last hyp before the conclusion, so it is the first element of *)
(* hyps. To know the first elmt is an inductive arg, we check if the *)
(* it appears in the conclusion (as rel 1). If yes, then it is not *)
(* an inductive arg, otherwise it is. There is a pathological case *)
(* with False_inf where Qi is rel 1, so we first get rid of Qi in *)
(* ccl. *\) *)
(* (\* if last arg of ccl is an application then this a functional ind *)
(* principle *\) let last_arg_ccl = *)
(* try List.hd (List.rev (snd (decompose_app ccl))) *)
(* with Failure "hd" -> mkProp in (\* dummy constr that is not an app *)
(* *\) let hyps',indarg,dep = *)
(* if isApp last_arg_ccl *)
(* then *)
(* hyps,None , false (\* no HI at all *\) *)
(* else *)
(* try *)
(* if noccurn 1 ccl (\* rel 1 does not occur in ccl *\) *)
(* then *)
(* List.tl hyps , Some (List.hd hyps), false (\* it does not *)
(* occur in concl *\) else *)
(* List.tl hyps , Some (List.hd hyps) , true (\* it does occur in concl *\) *)
(* with Failure s -> Util.error "cannot recognise an induction schema" *)
(* in *)
(* (\* Arguments [xni...x1] must appear in the conclusion, so we count *)
(* successive rels appearing in conclusion **Qi is not considered a *)
(* rel** *\) let nargs = count_rels_from *)
(* (match indarg with *)
(* | None -> 1 *)
(* | Some _ -> 2) ccl in *)
(* let args,hyps'' = cut_list nargs hyps' in *)
(* let rel_is_pred (_,_,c) = isSort (snd(decompose_prod_assum c)) in *)
(* let branches,hyps''' = *)
(* list_filter_firsts (function x -> not (rel_is_pred x)) hyps'' *)
(* in *)
(* (\* Now we want to know which hyps remaining are predicates and which *)
(* are parameters *\) *)
(* (\* We rebuild *)
(* forall (x1:Ti_1) (xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY *)
(* x1...xni HI ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^ *)
(* optional *)
(* opt *)
(* Free rels appearing in this term are parameters. We catch all of *)
(* them if HI is present. In this case the number of parameters is *)
(* the number of free rels. Otherwise (principle generated by *)
(* functional induction or by hand) WE GUESS that all parameters *)
(* appear in Ti_js, IS THAT TRUE??. *)
(* TODO: if we want to generalize to the case where arges are merged *)
(* with branches (?) and/or where several predicates are cited in *)
(* the conclusion, we should do something more precise than just *)
(* counting free rels. *)
(* *\) *)
(* let concl_with_indarg = *)
(* match indarg with *)
(* | None -> ccl *)
(* | Some c -> it_mkProd_or_LetIn ccl [c] in *)
(* let concl_with_args = it_mkProd_or_LetIn concl_with_indarg args in *)
(* (\* let nparams2 = Util.Intset.cardinal (Termops.free_rels concl_with_args) in *\) *)
(* let nparams = *)
(* try List.length (hyps'''@branches) - count_nonfree_rels_from 1 *)
(* concl_with_args with Not_found -> 0 in *)
(* let preds,params = cut_list (List.length hyps''' - nparams) hyps''' in *)
(* let elimscheme = { *)
(* params = params; *)
(* predicates = preds; *)
(* branches = branches; *)
(* args = args; *)
(* indarg = indarg; *)
(* concl = conclusion; *)
(* indarg_in_concl = dep; *)
(* } *)
(* in *)
(* elimscheme *)
(* let get_params elimt = *)
(* (compute_elim_sig elimt).params *)
(* (\************************************************\) *)
(* (\* end of Should be removed latter *\) *)
(* (\* Comes from new induction (cf Pierre) *\) *)
(* (\************************************************\) *)
|