1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
open Util
open Names
open Term
open Pp
open Indfun_common
open Libnames
open Rawterm
type annot =
Struct of identifier
| Wf of Topconstr.constr_expr * identifier option
| Mes of Topconstr.constr_expr * identifier option
type newfixpoint_expr =
identifier * annot * Topconstr.local_binder list * Topconstr.constr_expr * Topconstr.constr_expr
let rec abstract_rawconstr c = function
| [] -> c
| Topconstr.LocalRawDef (x,b)::bl -> Topconstr.mkLetInC(x,b,abstract_rawconstr c bl)
| Topconstr.LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> Topconstr.mkLambdaC([x],t,b)) idl
(abstract_rawconstr c bl)
let interp_casted_constr_with_implicits sigma env impls c =
(* Constrintern.interp_rawconstr_with_implicits sigma env [] impls c *)
Constrintern.intern_gen false sigma env ~impls:([],impls)
~allow_soapp:false ~ltacvars:([],[]) c
let build_newrecursive
(lnameargsardef:(newfixpoint_expr ) list) =
let env0 = Global.env()
and sigma = Evd.empty
in
let (rec_sign,rec_impls) =
List.fold_left
(fun (env,impls) (recname,_,bl,arityc,_) ->
let arityc = Command.generalize_constr_expr arityc bl in
let arity = Constrintern.interp_type sigma env0 arityc in
let impl =
if Impargs.is_implicit_args()
then Impargs.compute_implicits env0 arity
else [] in
let impls' =(recname,([],impl,Notation.compute_arguments_scope arity))::impls in
(Environ.push_named (recname,None,arity) env, impls'))
(env0,[]) lnameargsardef in
let recdef =
(* Declare local notations *)
let fs = States.freeze() in
let def =
try
List.map
(fun (_,_,bl,_,def) ->
let def = abstract_rawconstr def bl in
interp_casted_constr_with_implicits
sigma rec_sign rec_impls def
)
lnameargsardef
with e ->
States.unfreeze fs; raise e in
States.unfreeze fs; def
in
recdef
let compute_annot (name,annot,args,types,body) =
let names = List.map snd (Topconstr.names_of_local_assums args) in
match annot with
| None ->
if List.length names > 1 then
user_err_loc
(dummy_loc,"GenFixpoint",
Pp.str "the recursive argument needs to be specified");
let new_annot = (id_of_name (List.hd names)) in
(name,Struct new_annot,args,types,body)
| Some r -> (name,r,args,types,body)
let rec is_rec names =
let names = List.fold_right Idset.add names Idset.empty in
let check_id id = Idset.mem id names in
let rec lookup = function
| RVar(_,id) -> check_id id
| RRef _ | REvar _ | RPatVar _ | RSort _ | RHole _ | RDynamic _ -> false
| RCast(_,b,_,_) -> lookup b
| RRec _ -> assert false
| RIf _ -> failwith "Rif not implemented"
| RLetIn(_,_,t,b) | RLambda(_,_,t,b) | RProd(_,_,t,b) | RLetTuple(_,_,_,t,b) ->
lookup t || lookup b
| RApp(_,f,args) -> List.exists lookup (f::args)
| RCases(_,_,el,brl) ->
List.exists (fun (e,_) -> lookup e) el ||
List.exists (fun (_,_,_,ret)-> lookup ret) brl
in
lookup
let prepare_body (name,annot,args,types,body) rt =
let fun_args,rt' = chop_rlambda_n (Topconstr.local_binders_length args) rt in
(fun_args,rt')
let generate_principle fix_rec_l recdefs interactive_proof parametrize continue_proof =
let names = List.map (function (name,_,_,_,_) -> name) fix_rec_l in
let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
let funs_args = List.map fst fun_bodies in
let funs_types = List.map (function (_,_,_,types,_) -> types) fix_rec_l in
try
(* We then register the Inductive graphs of the functions *)
Rawterm_to_relation.build_inductive parametrize names funs_args funs_types recdefs;
let f_R_mut = Ident (dummy_loc,mk_rel_id (List.nth names 0)) in
let ind_kn =
fst (locate_with_msg
(pr_reference f_R_mut++str ": Not an inductive type!")
locate_ind
f_R_mut)
in
let fname_kn (fname,_,_,_,_) =
let f_ref = Ident (dummy_loc,fname) in
locate_with_msg
(pr_reference f_ref++str ": Not an inductive type!")
locate_constant
f_ref
in
let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in
let _ =
Util.list_map_i
(fun i x ->
New_arg_principle.generate_new_structural_principle
interactive_proof
(destConst (Indrec.lookup_eliminator (ind_kn,i) (InProp)))
None
funs_kn
i
(continue_proof i funs_kn)
)
0
fix_rec_l
in
()
with e ->
(* Pp.msg_warning (Cerrors.explain_exn e) *)
()
let register_struct is_rec fixpoint_exprl =
match fixpoint_exprl with
| [(fname,_,bl,ret_type,body),_] when not is_rec ->
Command.declare_definition
fname
(Decl_kinds.Global,Options.boxed_definitions (),Decl_kinds.Definition)
bl
None
body
(Some ret_type)
(fun _ _ -> ())
| _ ->
Command.build_recursive fixpoint_exprl (Options.boxed_definitions())
let generate_correction_proof_wf
is_mes f_ref eq_ref rec_arg_num rec_arg_type nb_args relation
(_: int) (_:Names.constant array) (_:int) : Tacmach.tactic =
Recdef.prove_principle
is_mes f_ref eq_ref rec_arg_num rec_arg_type nb_args relation
let register_wf ?(is_mes=false) fname wf_rel_expr wf_arg args ret_type body
pre_hook
=
let type_of_f = Command.generalize_constr_expr ret_type args in
let rec_arg_num =
let names =
List.map
snd
(Topconstr.names_of_local_assums args)
in
match wf_arg with
| None ->
if List.length names = 1 then 1
else error "Recursive argument must be specified"
| Some wf_arg ->
Util.list_index (Name wf_arg) names
in
let unbounded_eq =
let f_app_args =
Topconstr.CApp
(dummy_loc,
(None,Topconstr.mkIdentC fname) ,
(List.map
(function
| _,Anonymous -> assert false
| _,Name e -> (Topconstr.mkIdentC e,None)
)
(Topconstr.names_of_local_assums args)
)
)
in
Topconstr.CApp (dummy_loc,(None,Topconstr.mkIdentC (id_of_string "eq")),
[(f_app_args,None);(body,None)])
in
let eq = Command.generalize_constr_expr unbounded_eq args in
let hook f_ref eq_ref rec_arg_num rec_arg_type nb_args relation =
pre_hook
(generate_correction_proof_wf is_mes
f_ref eq_ref rec_arg_num rec_arg_type nb_args relation
)
in
Recdef.recursive_definition
is_mes fname
type_of_f
wf_rel_expr
rec_arg_num
eq
hook
let register_mes fname wf_mes_expr wf_arg args ret_type body =
let wf_arg_type,wf_arg =
match wf_arg with
| None ->
begin
match args with
| [Topconstr.LocalRawAssum ([(_,Name x)],t)] -> t,x
| _ -> error "Recursive argument must be specified"
end
| Some wf_args ->
try
match
List.find
(function
| Topconstr.LocalRawAssum(l,t) ->
List.exists
(function (_,Name id) -> id = wf_args | _ -> false)
l
| _ -> false
)
args
with
| Topconstr.LocalRawAssum(_,t) -> t,wf_args
| _ -> assert false
with Not_found -> assert false
in
let ltof =
let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) in
Libnames.Qualid (dummy_loc,Libnames.qualid_of_sp
(Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (id_of_string "ltof")))
in
let fun_from_mes =
let applied_mes =
Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC wf_arg])
in
Topconstr.mkLambdaC ([(dummy_loc,Name wf_arg)],wf_arg_type,applied_mes)
in
let wf_rel_from_mes =
Topconstr.mkAppC(Topconstr.mkRefC ltof,[wf_arg_type;fun_from_mes])
in
register_wf ~is_mes:true fname wf_rel_from_mes (Some wf_arg) args ret_type body
let register (fixpoint_exprl : newfixpoint_expr list) =
let recdefs = build_newrecursive fixpoint_exprl in
let _is_struct =
match fixpoint_exprl with
| [((name,Wf (wf_rel,wf_x),args,types,body))] ->
let pre_hook =
generate_principle
fixpoint_exprl
recdefs
true
false
in
register_wf name wf_rel wf_x args types body pre_hook;
false
| [((name,Mes (wf_mes,wf_x),args,types,body))] ->
let pre_hook =
generate_principle
fixpoint_exprl
recdefs
true
false
in
register_mes name wf_mes wf_x args types body pre_hook;
false
| _ ->
let old_fixpoint_exprl =
List.map
(function
| (name,Struct id,args,types,body) ->
let names =
List.map
snd
(Topconstr.names_of_local_assums args)
in
let annot = Util.list_index (Name id) names - 1 in
(name,annot,args,types,body),(None:Vernacexpr.decl_notation)
| (_,Wf _,_,_,_) | (_,Mes _,_,_,_) ->
error
("Cannot use mutual definition with well-founded recursion")
)
fixpoint_exprl
in
(* ok all the expressions are structural *)
let fix_names =
List.map (function (name,_,_,_,_) -> name) fixpoint_exprl
in
let is_rec = List.exists (is_rec fix_names) recdefs in
register_struct is_rec old_fixpoint_exprl;
generate_principle
fixpoint_exprl
recdefs
false
true
(New_arg_principle.prove_princ_for_struct);
true
in
()
let do_generate_principle fix_rec_l =
(* we first of all checks whether on not all the correct
assumption are here
*)
let newfixpoint_exprl = List.map compute_annot fix_rec_l in
(* we can then register the functions *)
register newfixpoint_exprl
|