aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/funind/indfun.ml
blob: 56855f5da88266836b336dafaa8028b0ee83f954 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
open Util
open Names
open Term

open Pp
open Indfun_common
open Libnames
open Rawterm

type annot = 
    Struct of identifier 
  | Wf of Topconstr.constr_expr * identifier option
  | Mes of Topconstr.constr_expr * identifier option


type newfixpoint_expr =
    identifier * annot * Topconstr.local_binder list * Topconstr.constr_expr * Topconstr.constr_expr

let rec abstract_rawconstr c = function
  | [] -> c
  | Topconstr.LocalRawDef (x,b)::bl -> Topconstr.mkLetInC(x,b,abstract_rawconstr c bl)
  | Topconstr.LocalRawAssum (idl,t)::bl ->
      List.fold_right (fun x b -> Topconstr.mkLambdaC([x],t,b)) idl
        (abstract_rawconstr c bl)

let interp_casted_constr_with_implicits sigma env impls c  =
(*   Constrintern.interp_rawconstr_with_implicits sigma env [] impls c *)
  Constrintern.intern_gen false sigma env ~impls:([],impls) 
    ~allow_soapp:false  ~ltacvars:([],[]) c

let build_newrecursive
(lnameargsardef:(newfixpoint_expr ) list)  =
  let env0 = Global.env()
  and sigma = Evd.empty
  in
  let (rec_sign,rec_impls) =
    List.fold_left
      (fun (env,impls) (recname,_,bl,arityc,_) ->
        let arityc = Command.generalize_constr_expr arityc bl in
        let arity = Constrintern.interp_type sigma env0 arityc in
	let impl =
	  if Impargs.is_implicit_args()
	  then Impargs.compute_implicits  env0 arity
	  else [] in
	let impls' =(recname,([],impl,Notation.compute_arguments_scope arity))::impls in
        (Environ.push_named (recname,None,arity) env, impls'))
      (env0,[]) lnameargsardef in
  let recdef =
    (* Declare local notations *)
    let fs = States.freeze() in
    let def =
      try
	List.map
	  (fun (_,_,bl,_,def)  ->
             let def = abstract_rawconstr def bl in
             interp_casted_constr_with_implicits
	       sigma rec_sign rec_impls def
	  )
          lnameargsardef
	with e ->
	States.unfreeze fs; raise e in
    States.unfreeze fs; def
  in
  recdef
	

let compute_annot (name,annot,args,types,body) =
  let names = List.map snd (Topconstr.names_of_local_assums args) in
  match annot with
    | None ->
        if List.length names > 1 then
            user_err_loc
              (dummy_loc,"GenFixpoint",
               Pp.str "the recursive argument needs to be specified");
        let new_annot = (id_of_name (List.hd names)) in
	(name,Struct new_annot,args,types,body)
    | Some r -> (name,r,args,types,body)



let rec is_rec names = 
  let names = List.fold_right Idset.add names Idset.empty in 
  let check_id id =  Idset.mem id names in 
  let rec lookup = function 
    | RVar(_,id) -> check_id id
    | RRef _ | REvar _ | RPatVar _ | RSort _ |  RHole _ | RDynamic _ -> false
    | RCast(_,b,_,_) -> lookup b
    | RRec _ -> assert false 
    | RIf _ -> failwith "Rif not implemented"
    | RLetIn(_,_,t,b) | RLambda(_,_,t,b) | RProd(_,_,t,b) | RLetTuple(_,_,_,t,b) -> 
	lookup t || lookup b
    | RApp(_,f,args) -> List.exists lookup (f::args)
    | RCases(_,_,el,brl) -> 
	List.exists (fun (e,_) -> lookup e) el ||
	  List.exists (fun (_,_,_,ret)-> lookup ret) brl
  in
  lookup 

let prepare_body (name,annot,args,types,body) rt = 
  let fun_args,rt' = chop_rlambda_n (Topconstr.local_binders_length args) rt in
  (fun_args,rt')


let generate_principle fix_rec_l recdefs  interactive_proof parametrize continue_proof   =
  let names = List.map (function (name,_,_,_,_) -> name) fix_rec_l in
  let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
  let funs_args = List.map fst fun_bodies in
  let funs_types =  List.map (function (_,_,_,types,_) -> types) fix_rec_l in
  try 
    (* We then register the Inductive graphs of the functions  *)
    Rawterm_to_relation.build_inductive parametrize names funs_args funs_types recdefs;
    let f_R_mut = Ident (dummy_loc,mk_rel_id (List.nth names 0)) in
    let ind_kn =
      fst (locate_with_msg
	(pr_reference f_R_mut++str ": Not an inductive type!")
	locate_ind
	f_R_mut)
    in
    let fname_kn (fname,_,_,_,_) =
      let f_ref = Ident (dummy_loc,fname) in
      locate_with_msg
	(pr_reference f_ref++str ": Not an inductive type!")
	locate_constant
	f_ref
    in
  let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in 
  let _ = 
    Util.list_map_i
      (fun i x ->
	 New_arg_principle.generate_new_structural_principle
	   interactive_proof 
	   (destConst (Indrec.lookup_eliminator (ind_kn,i) (InProp)))
	   None
	   funs_kn
	   i
	  (continue_proof i funs_kn)
      )
      0
      fix_rec_l
  in 
  ()
  with e -> 
(*     Pp.msg_warning (Cerrors.explain_exn e) *)
    ()


let register_struct is_rec fixpoint_exprl = 
  match fixpoint_exprl with 
    | [(fname,_,bl,ret_type,body),_] when not is_rec -> 
	Command.declare_definition
	  fname
	  (Decl_kinds.Global,Options.boxed_definitions (),Decl_kinds.Definition)
	  bl
	  None
  	  body
	  (Some ret_type)
	  (fun _ _ -> ())
    | _ -> 
	Command.build_recursive fixpoint_exprl (Options.boxed_definitions())


let generate_correction_proof_wf  
    is_mes f_ref eq_ref rec_arg_num rec_arg_type nb_args relation
    (_: int) (_:Names.constant array) (_:int) : Tacmach.tactic = 
  Recdef.prove_principle 
    is_mes f_ref eq_ref rec_arg_num rec_arg_type nb_args relation


let register_wf ?(is_mes=false) fname wf_rel_expr wf_arg args ret_type body
    pre_hook 
    =  
  let type_of_f = Command.generalize_constr_expr ret_type args in 
  let rec_arg_num = 
    let names = 
      List.map
	snd
	(Topconstr.names_of_local_assums args) 
    in 
    match wf_arg with 
      | None -> 
	  if List.length names = 1 then 1
	  else error "Recursive argument must be specified"
      | Some wf_arg -> 
	  Util.list_index (Name wf_arg) names 
  in
  let unbounded_eq = 
    let f_app_args = 
      Topconstr.CApp 
	(dummy_loc, 
	 (None,Topconstr.mkIdentC fname) ,
	 (List.map 
	    (function
	       | _,Anonymous -> assert false 
	       | _,Name e -> (Topconstr.mkIdentC e,None)
	    ) 
	    (Topconstr.names_of_local_assums args)
	 )
	) 
    in
    Topconstr.CApp (dummy_loc,(None,Topconstr.mkIdentC (id_of_string "eq")),
		    [(f_app_args,None);(body,None)])
  in
  let eq = Command.generalize_constr_expr unbounded_eq args in 
  let hook f_ref eq_ref rec_arg_num rec_arg_type nb_args relation =
    pre_hook 
      (generate_correction_proof_wf is_mes
	 f_ref eq_ref rec_arg_num rec_arg_type nb_args relation
      )
  in 
  Recdef.recursive_definition 
    is_mes fname 
    type_of_f
    wf_rel_expr
    rec_arg_num
    eq
    hook

    
let register_mes fname wf_mes_expr wf_arg args ret_type body = 
  let wf_arg_type,wf_arg = 
    match wf_arg with 
      | None -> 
	  begin
	    match args with 
	      | [Topconstr.LocalRawAssum ([(_,Name x)],t)] -> t,x 
	      | _ -> error "Recursive argument must be specified" 
	  end
      | Some wf_args -> 
	  try 
	    match 
	      List.find 
		(function 
		   | Topconstr.LocalRawAssum(l,t) -> 
		       List.exists 
			 (function (_,Name id) -> id =  wf_args | _ -> false) 
			 l 
		   | _ -> false
		)
		args 
	    with 
	      | Topconstr.LocalRawAssum(_,t)  ->	    t,wf_args
	      | _ -> assert false 
	  with Not_found -> assert false 
  in
  let ltof = 
    let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) in 
    Libnames.Qualid (dummy_loc,Libnames.qualid_of_sp 
      (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (id_of_string "ltof")))
  in
  let fun_from_mes = 
    let applied_mes = 
      Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC wf_arg])
    in
    Topconstr.mkLambdaC ([(dummy_loc,Name wf_arg)],wf_arg_type,applied_mes) 
  in
  let wf_rel_from_mes = 
    Topconstr.mkAppC(Topconstr.mkRefC  ltof,[wf_arg_type;fun_from_mes])
  in
  register_wf ~is_mes:true fname wf_rel_from_mes (Some wf_arg) args ret_type body
	  



let register (fixpoint_exprl :  newfixpoint_expr list) = 
  let recdefs = build_newrecursive fixpoint_exprl in 
  let _is_struct = 
    match fixpoint_exprl with 
      | [((name,Wf (wf_rel,wf_x),args,types,body))] -> 
	  let pre_hook = 
	    generate_principle 
	      fixpoint_exprl 
	      recdefs
	      true
	      false
	  in 
	  register_wf name wf_rel wf_x args types body pre_hook;
	  false
      | [((name,Mes (wf_mes,wf_x),args,types,body))] -> 
	  let pre_hook = 
	    generate_principle 
	      fixpoint_exprl 
	      recdefs
	      true
	      false
	  in 
	  register_mes name wf_mes wf_x args types body pre_hook;

	  false
      | _ -> 
	  
	  let old_fixpoint_exprl =  
	    List.map 
	      (function
		 | (name,Struct id,args,types,body) -> 
		     let names = 
		       List.map
			 snd
			 (Topconstr.names_of_local_assums args) 
		     in 
		     let annot = Util.list_index (Name id) names - 1 in 
 		     (name,annot,args,types,body),(None:Vernacexpr.decl_notation) 
		 | (_,Wf _,_,_,_) | (_,Mes _,_,_,_)  -> 
		     error 
		       ("Cannot use mutual definition with well-founded recursion")
	      ) 
	      fixpoint_exprl 
	  in
	  (* ok all the expressions are structural *) 
	  let fix_names = 
	    List.map (function (name,_,_,_,_) -> name) fixpoint_exprl 
	  in
	  let is_rec = List.exists (is_rec fix_names) recdefs in
	  register_struct is_rec old_fixpoint_exprl;
	  generate_principle 
	    fixpoint_exprl
	    recdefs 
	    false
	    true
	    (New_arg_principle.prove_princ_for_struct);
	  true
						 
  in
  ()


let do_generate_principle fix_rec_l = 
  (* we first of all checks whether on not all the correct 
     assumption  are here 
  *)
  let newfixpoint_exprl = List.map compute_annot fix_rec_l in 
  (* we can then register the functions *) 
  register newfixpoint_exprl