aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/first-order/sequent.ml
blob: 690feb874a71a01d908057a778f9a7d6ef0c2fb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Term
open Util
open Formula
open Tacmach
open Names
open Libnames
open Pp

let newcnt ()=
  let cnt=ref (-1) in
    fun b->if b then incr cnt;!cnt

let priority = function (* pure heuristics, <=0 for non reversible *)
      Lfalse             ->1000
    | Land _             ->  90
    | Lor _              ->  40
    | Lforall (_,_)      -> -30 (* must stay at lowest priority *)
    | Lexists            ->  60
    | Levaluable _       -> 100
    | LA(_,lap) ->
	match lap with
	    LLatom             ->   0
	  | LLfalse            -> 100
	  | LLand (_,_)        ->  80
	  | LLor (_,_)         ->  70
	  | LLforall _         -> -20
	  | LLexists (_,_)     ->  50
	  | LLarrow  (_,_,_)   -> -10 
	  | LLevaluable _      -> 100

let right_reversible=
  function
      Rarrow | Rand | Rforall | Revaluable _ ->true
    | _ ->false
	
let left_reversible lpat=(priority lpat)>0

module OrderedFormula=
struct
  type t=left_formula
  let compare e1 e2=
	(priority e1.pat) - (priority e2.pat)
end

(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
   the immediate subterms of [c1] of [c2] if needed; Cast's,
   application associativity, binders name and Cases annotations are
   not taken into account *)

let rec compare_list f l1 l2=
  match l1,l2 with
      [],[]-> 0
    | [],_ -> -1
    | _,[] -> 1
    | (h1::q1),(h2::q2) -> (f =? (compare_list f)) h1 h2 q1 q2


let compare_array f v1 v2=  
  let l=Array.length v1 in
  let c=l - Array.length v2 in
    if c=0 then
      let rec comp_aux i=
	if i<0 then 0 
	else
	  let ci=f v1.(i) v2.(i) in
	    if ci=0 then 
	      comp_aux (i-1)
	    else ci
      in comp_aux (l-1)
    else c

let compare_constr_int f t1 t2 =
  match kind_of_term t1, kind_of_term t2 with
    | Rel n1, Rel n2 -> n1 - n2
    | Meta m1, Meta m2 -> m1 - m2
    | Var id1, Var id2 -> Pervasives.compare id1 id2
    | Sort s1, Sort s2 -> Pervasives.compare s1 s2
    | Cast (c1,_), _ -> f c1 t2
    | _, Cast (c2,_) -> f t1 c2
    | Prod (_,t1,c1), Prod (_,t2,c2) 
    | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
	(f =? f) t1 t2 c1 c2 
    | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> 
	((f =? f) ==? f) b1 b2 t1 t2 c1 c2
    | App (_,_), App (_,_) ->
	let c1,l1=decompose_app t1 
	and c2,l2=decompose_app t2 in
	  (f =? (compare_list f)) c1 c2 l1 l2
    | Evar (e1,l1), Evar (e2,l2) -> 
	((-) =? (compare_array f)) e1 e2 l1 l2
    | Const c1, Const c2 -> Pervasives.compare c1 c2
    | Ind c1, Ind c2 -> Pervasives.compare c1 c2
    | Construct c1, Construct c2 -> Pervasives.compare c1 c2
    | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
	((f =? f) ==? (compare_array f)) p1 p2 c1 c2 bl1 bl2
    | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
	((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
	ln1 ln2 tl1 tl2 bl1 bl2
    | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
	((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
	ln1 ln2 tl1 tl2 bl1 bl2
    | _ -> Pervasives.compare t1 t2

let rec compare_constr m n=
  compare_constr_int compare_constr m n
    
module OrderedConstr=
struct
  type t=constr
  let compare=compare_constr
end

module Hitem=
struct 
  type t=(global_reference * constr option)
  let compare (id1,co1) (id2,co2)=
    (Pervasives.compare 
     =? (fun oc1 oc2 ->
	   match oc1,oc2 with 
	       Some c1,Some c2 -> OrderedConstr.compare c1 c2
	     | _,_->Pervasives.compare oc1 oc2)) id1 id2 co1 co2
end

module CM=Map.Make(OrderedConstr)

module History=Set.Make(Hitem)

let cm_add typ nam cm=
  try 
    let l=CM.find typ cm in CM.add typ (nam::l) cm
  with
      Not_found->CM.add typ [nam] cm
	
let cm_remove typ nam cm=
  try
    let l=CM.find typ cm in 
    let l0=List.filter (fun id->id<>nam) l in
      match l0 with 
	  []->CM.remove typ cm
	| _ ->CM.add typ l0 cm
      with Not_found ->cm

module HP=Heap.Functional(OrderedFormula)

type t=
    {redexes:HP.t;
     context:(global_reference list) CM.t;
     latoms:constr list;
     gl:right_formula;
     cnt:counter;
     history:History.t;
     depth:int}

let deepen seq={seq with depth=seq.depth-1}
 
let record id topt seq={seq with history=History.add (id,topt) seq.history}

let lookup id topt seq=History.mem (id,topt) seq.history

let add_left (nam,t) seq internal gl=
  match build_left_entry nam t internal gl seq.cnt with
      Left f->{seq with 
		 redexes=HP.add f seq.redexes;
		 context=cm_add f.constr nam seq.context}
    | Right t->{seq with 
		  context=cm_add t nam seq.context;
		  latoms=t::seq.latoms}

let re_add_left_list lf seq=
  {seq with 
     redexes=List.fold_right HP.add lf seq.redexes;
     context=List.fold_right 
	       (fun f cm->cm_add f.constr f.id cm) lf seq.context}

let change_right t seq gl=
  {seq with gl=build_right_entry t gl seq.cnt}

let find_left t seq=List.hd (CM.find t seq.context)

let rev_left seq=
  try
    let lpat=(HP.maximum seq.redexes).pat in
      left_reversible lpat
  with Heap.EmptyHeap -> false

let is_empty_left seq=
  seq.redexes=HP.empty

let take_left seq=
  let hd=HP.maximum seq.redexes
  and hp=HP.remove seq.redexes in
    hd,{seq with 
	  redexes=hp;
	  context=cm_remove hd.constr hd.id seq.context}

let take_right seq=seq.gl

let empty_seq depth=
  {redexes=HP.empty;   
   context=CM.empty;
   latoms=[];
   gl=Atomic (mkMeta 1);
   cnt=newcnt ();
   history=History.empty;
   depth=depth}

let create_with_ref_list l depth gl=
  let f gr seq=
    let c=constr_of_reference gr in    
    let typ=(pf_type_of gl c) in
      add_left (gr,typ) seq false gl in
    List.fold_right f l (empty_seq depth)

open Auto

let create_with_auto_hints depth gl=
  let seqref=ref (empty_seq depth) in
  let f p_a_t =
    match p_a_t.code with
	Res_pf (c,_) | Give_exact c
      | Res_pf_THEN_trivial_fail (c,_) ->
	  (try 
	     let gr=reference_of_constr c in 
	     let typ=(pf_type_of gl c) in
	       seqref:=add_left (gr,typ) !seqref false gl
	   with Not_found->())
      | _-> () in
  let g _ l=List.iter f l in
  let h str hdb=Hint_db.iter g hdb in
    Util.Stringmap.iter h (!searchtable);
    !seqref

let print_cmap map=
  let print_entry c l s=
    let xc=Constrextern.extern_constr false (Global.env ()) c in
      str "| " ++ 
      Util.prlist (Ppconstr.pr_global Idset.empty) l ++ 
      str " : " ++
      Ppconstr.pr_constr xc ++ 
      cut () ++ 
      s in
    msgnl (v 0 
	     (str "-----" ++ 
	      cut () ++
	      CM.fold print_entry map (mt ()) ++
	      str "-----"))