aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/field/Field_Tactic.v
blob: 579b7ebf87842b341756fc8ac1136d4e4b67baa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

Require Import Ring.
Require Export Field_Compl.
Require Export Field_Theory.

(**** Interpretation A --> ExprA ****)

Ltac mem_assoc var lvar :=
  match constr:lvar with
  | (nilT _) => constr:false
  | (consT _ ?X1 ?X2) =>
      match constr:(X1 = var) with
      | (?X1 = ?X1) => constr:true
      | _ => mem_assoc var X2
      end
  end.

Ltac seek_var_aux FT lvar trm :=
  let AT := eval cbv beta iota delta [A] in (A FT)
  with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
  with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
  with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
  with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
  with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
  with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
  match constr:trm with
  | AzeroT => lvar
  | AoneT => lvar
  | (AplusT ?X1 ?X2) =>
      let l1 := seek_var_aux FT lvar X1 in
      seek_var_aux FT l1 X2
  | (AmultT ?X1 ?X2) =>
      let l1 := seek_var_aux FT lvar X1 in
      seek_var_aux FT l1 X2
  | (AoppT ?X1) => seek_var_aux FT lvar X1
  | (AinvT ?X1) => seek_var_aux FT lvar X1
  | ?X1 =>
      let res := mem_assoc X1 lvar in
      match constr:res with
      | true => lvar
      | false => constr:(consT AT X1 lvar)
      end
  end.

Ltac seek_var FT trm :=
  let AT := eval cbv beta iota delta [A] in (A FT) in
  seek_var_aux FT (nilT AT) trm.

Ltac number_aux lvar cpt :=
  match constr:lvar with
  | (nilT ?X1) => constr:(nilT (prodT X1 nat))
  | (consT ?X1 ?X2 ?X3) =>
      let l2 := number_aux X3 (S cpt) in
      constr:(consT (prodT X1 nat) (pairT X1 nat X2 cpt) l2)
  end.

Ltac number lvar := number_aux lvar 0.

Ltac build_varlist FT trm := let lvar := seek_var FT trm in
                             number lvar.

Ltac assoc elt lst :=
  match constr:lst with
  | (nilT _) => fail
  | (consT (prodT _ nat) (pairT _ nat ?X1 ?X2) ?X3) =>
      match constr:(elt = X1) with
      | (?X1 = ?X1) => constr:X2
      | _ => assoc elt X3
      end
  end.

Ltac interp_A FT lvar trm :=
  let AT := eval cbv beta iota delta [A] in (A FT)
  with AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
  with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
  with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
  with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
  with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
  with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
  match constr:trm with
  | AzeroT => constr:EAzero
  | AoneT => constr:EAone
  | (AplusT ?X1 ?X2) =>
      let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
      constr:(EAplus e1 e2)
  | (AmultT ?X1 ?X2) =>
      let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in
      constr:(EAmult e1 e2)
  | (AoppT ?X1) =>
      let e := interp_A FT lvar X1 in
      constr:(EAopp e)
  | (AinvT ?X1) => let e := interp_A FT lvar X1 in
                   constr:(EAinv e)
  | ?X1 => let idx := assoc X1 lvar in
           constr:(EAvar idx)
  end.

(************************)
(*    Simplification    *)
(************************)

(**** Generation of the multiplier ****)

Ltac remove e l :=
  match constr:l with
  | (nilT _) => l
  | (consT ?X1 e ?X2) => constr:X2
  | (consT ?X1 ?X2 ?X3) => let nl := remove e X3 in
                           constr:(consT X1 X2 nl)
  end.

Ltac union l1 l2 :=
  match constr:l1 with
  | (nilT _) => l2
  | (consT ?X1 ?X2 ?X3) =>
      let nl2 := remove X2 l2 in
      let nl := union X3 nl2 in
      constr:(consT X1 X2 nl)
  end.

Ltac raw_give_mult trm :=
  match constr:trm with
  | (EAinv ?X1) => constr:(consT ExprA X1 (nilT ExprA))
  | (EAopp ?X1) => raw_give_mult X1
  | (EAplus ?X1 ?X2) =>
      let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
      union l1 l2
  | (EAmult ?X1 ?X2) =>
      let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in
      eval compute in (appT ExprA l1 l2)
  | _ => constr:(nilT ExprA)
  end.

Ltac give_mult trm :=
  let ltrm := raw_give_mult trm in
  constr:(mult_of_list ltrm).

(**** Associativity ****)

Ltac apply_assoc FT lvar trm :=
  let t := eval compute in (assoc trm) in
  match constr:(t = trm) with
  | (?X1 = ?X1) => idtac
  | _ =>
      rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
  end.

(**** Distribution *****)

Ltac apply_distrib FT lvar trm :=
  let t := eval compute in (distrib trm) in
  match constr:(t = trm) with
  | (?X1 = ?X1) => idtac
  | _ =>
      rewrite <- (distrib_correct FT trm);
       change (distrib trm) with t in |- *
  end.

(**** Multiplication by the inverse product ****)

Ltac grep_mult := match goal with
                  | id:(interp_ExprA _ _ _ <> _) |- _ => id
                  end.

Ltac weak_reduce :=
  match goal with
  |  |- context [(interp_ExprA ?X1 ?X2 _)] =>
      cbv beta iota zeta
       delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
             Aone Aplus Amult Aopp Ainv] in |- *
  end.

Ltac multiply mul :=
  match goal with
  |  |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA ?X1 ?X2 ?X4) =>
      let AzeroT := eval cbv beta iota delta [Azero X1] in (Azero X1) in
      (cut (interp_ExprA X1 X2 mul <> AzeroT);
        [ intro; let id := grep_mult in
                 apply (mult_eq X1 X3 X4 mul X2 id)
        | weak_reduce;
           let AoneT := eval cbv beta iota delta [Aone X1] in (Aone X1)
           with AmultT := eval cbv beta iota delta [Amult X1] in (Amult X1) in
           (try
             match goal with
             |  |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r X1)
             end; clear X1 X2) ])
  end.

Ltac apply_multiply FT lvar trm :=
  let t := eval compute in (multiply trm) in
  match constr:(t = trm) with
  | (?X1 = ?X1) => idtac
  | _ =>
      rewrite <- (multiply_correct FT trm);
       change (multiply trm) with t in |- *
  end.

(**** Permutations and simplification ****)

Ltac apply_inverse mul FT lvar trm :=
  let t := eval compute in (inverse_simplif mul trm) in
  match constr:(t = trm) with
  | (?X1 = ?X1) => idtac
  | _ =>
      rewrite <- (inverse_correct FT trm mul);
       [ change (inverse_simplif mul trm) with t in |- * | assumption ]
  end.
(**** Inverse test ****)

Ltac strong_fail tac := first [ tac | fail 2 ].

Ltac inverse_test_aux FT trm :=
  let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
  with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
  with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
  with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
  match constr:trm with
  | (AinvT _) => fail 1
  | (AoppT ?X1) =>
      strong_fail ltac:(inverse_test_aux FT X1; idtac)
  | (AplusT ?X1 ?X2) =>
      strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
  | (AmultT ?X1 ?X2) =>
      strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2)
  | _ => idtac
  end.

Ltac inverse_test FT :=
  let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
  match goal with
  |  |- (?X1 = ?X2) => inverse_test_aux FT (AplusT X1 X2)
  end.

(**** Field itself ****)

Ltac apply_simplif sfun :=
  match goal with
  |  |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA _ _ _) => 
  sfun X1 X2 X3
  end;
   match goal with
   |  |- (interp_ExprA _ _ _ = interp_ExprA ?X1 ?X2 ?X3) => 
   sfun X1 X2 X3
   end.

Ltac unfolds FT :=
  match eval cbv beta iota delta [Aminus] in (Aminus FT) with
  | (Field_Some _ ?X1) => unfold X1 in |- *
  | _ => idtac
  end;
   match eval cbv beta iota delta [Adiv] in (Adiv FT) with
   | (Field_Some _ ?X1) => unfold X1 in |- *
   | _ => idtac
   end.

Ltac reduce FT :=
  let AzeroT := eval cbv beta iota delta [Azero] in (Azero FT)
  with AoneT := eval cbv beta iota delta [Aone] in (Aone FT)
  with AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT)
  with AmultT := eval cbv beta iota delta [Amult] in (Amult FT)
  with AoppT := eval cbv beta iota delta [Aopp] in (Aopp FT)
  with AinvT := eval cbv beta iota delta [Ainv] in (Ainv FT) in
  (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
     compute in |- *).

Ltac field_gen_aux FT :=
  let AplusT := eval cbv beta iota delta [Aplus] in (Aplus FT) in
  match goal with
  |  |- (?X1 = ?X2) =>
      let lvar := build_varlist FT (AplusT X1 X2) in
      let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in
      let mul := give_mult (EAplus trm1 trm2) in
      (cut
        (let ft := FT in
         let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
        [ compute in |- *; auto
        | intros ft vm; apply_simplif apply_distrib;
           apply_simplif apply_assoc; multiply mul;
           [ apply_simplif apply_multiply;
              apply_simplif ltac:(apply_inverse mul);
              let id := grep_mult in
              clear id; weak_reduce; clear ft vm; first
              [ inverse_test FT; ring | field_gen_aux FT ]
           | idtac ] ])
  end.

Ltac field_gen FT := unfolds FT; (inverse_test FT; ring) || field_gen_aux FT.

(*****************************)
(*    Term Simplification    *)
(*****************************)

(**** Minus and division expansions ****)

Ltac init_exp FT trm :=
  let e :=
   (match eval cbv beta iota delta [Aminus] in (Aminus FT) with
    | (Field_Some _ ?X1) => eval cbv beta delta [X1] in trm
    | _ => trm
    end) in
  match eval cbv beta iota delta [Adiv] in (Adiv FT) with
  | (Field_Some _ ?X1) => eval cbv beta delta [X1] in e
  | _ => e
  end.

(**** Inverses simplification ****)

Ltac simpl_inv trm :=
  match constr:trm with
  | (EAplus ?X1 ?X2) =>
      let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
      constr:(EAplus e1 e2)
  | (EAmult ?X1 ?X2) =>
      let e1 := simpl_inv X1 with e2 := simpl_inv X2 in
      constr:(EAmult e1 e2)
  | (EAopp ?X1) => let e := simpl_inv X1 in
                   constr:(EAopp e)
  | (EAinv ?X1) => SimplInvAux X1
  | ?X1 => constr:X1
  end
 with SimplInvAux trm :=
  match constr:trm with
  | (EAinv ?X1) => simpl_inv X1
  | (EAmult ?X1 ?X2) =>
      let e1 := simpl_inv (EAinv X1) with e2 := simpl_inv (EAinv X2) in
      constr:(EAmult e1 e2)
  | ?X1 => let e := simpl_inv X1 in
           constr:(EAinv e)
  end.

(**** Monom simplification ****)

Ltac map_tactic fcn lst :=
  match constr:lst with
  | (nilT _) => lst
  | (consT ?X1 ?X2 ?X3) =>
      let r := fcn X2 with t := map_tactic fcn X3 in
      constr:(consT X1 r t)
  end.

Ltac build_monom_aux lst trm :=
  match constr:lst with
  | (nilT _) => eval compute in (assoc trm)
  | (consT _ ?X1 ?X2) => build_monom_aux X2 (EAmult trm X1)
  end.

Ltac build_monom lnum lden :=
  let ildn := map_tactic ltac:(fun e => constr:(EAinv e)) lden in
  let ltot := eval compute in (appT ExprA lnum ildn) in
  let trm := build_monom_aux ltot EAone in
  match constr:trm with
  | (EAmult _ ?X1) => constr:X1
  | ?X1 => constr:X1
  end.

Ltac simpl_monom_aux lnum lden trm :=
  match constr:trm with
  | (EAmult (EAinv ?X1) ?X2) =>
      let mma := mem_assoc X1 lnum in
      match constr:mma with
      | true =>
          let newlnum := remove X1 lnum in
          simpl_monom_aux newlnum lden X2
      | false => simpl_monom_aux lnum (consT ExprA X1 lden) X2
      end
  | (EAmult ?X1 ?X2) =>
      let mma := mem_assoc X1 lden in
      match constr:mma with
      | true =>
          let newlden := remove X1 lden in
          simpl_monom_aux lnum newlden X2
      | false => simpl_monom_aux (consT ExprA X1 lnum) lden X2
      end
  | (EAinv ?X1) =>
      let mma := mem_assoc X1 lnum in
      match constr:mma with
      | true =>
          let newlnum := remove X1 lnum in
          build_monom newlnum lden
      | false => build_monom lnum (consT ExprA X1 lden)
      end
  | ?X1 =>
      let mma := mem_assoc X1 lden in
      match constr:mma with
      | true =>
          let newlden := remove X1 lden in
          build_monom lnum newlden
      | false => build_monom (consT ExprA X1 lnum) lden
      end
  end.

Ltac simpl_monom trm := simpl_monom_aux (nilT ExprA) (nilT ExprA) trm.

Ltac simpl_all_monomials trm :=
  match constr:trm with
  | (EAplus ?X1 ?X2) =>
      let e1 := simpl_monom X1 with e2 := simpl_all_monomials X2 in
      constr:(EAplus e1 e2)
  | ?X1 => simpl_monom X1
  end.

(**** Associativity and distribution ****)

Ltac assoc_distrib trm := eval compute in (assoc (distrib trm)).

(**** The tactic Field_Term ****)

Ltac eval_weak_reduce trm :=
  eval
   cbv beta iota zeta
    delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero Aone Aplus
          Amult Aopp Ainv] in trm.

Ltac field_term FT exp :=
  let newexp := init_exp FT exp in
  let lvar := build_varlist FT newexp in
  let trm := interp_A FT lvar newexp in
  let tma := eval compute in (assoc trm) in
  let tsmp :=
   simpl_all_monomials
    ltac:(assoc_distrib ltac:(simpl_all_monomials ltac:(simpl_inv tma))) in
  let trep := eval_weak_reduce (interp_ExprA FT lvar tsmp) in
  (replace exp with trep; [ ring trep | field_gen FT ]).