aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/extraction/table.ml
blob: 34b57a45c17c21929b55d3ac012945bfac203a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

open Summary
open Lib
open Libobject
open Goptions
open Vernacinterp
open Extend
open Names
open Util
open Pp
open Term 
open Declarations
open Nametab
open Reduction

(*s AutoInline parameter *)

let auto_inline_ref = ref true

let auto_inline () = !auto_inline_ref

let _ = declare_bool_option 
	  {optsync = true;
	   optname = "Extraction AutoInline";
	   optkey = SecondaryTable ("Extraction", "AutoInline");
	   optread = auto_inline; 
	   optwrite = (:=) auto_inline_ref}

(*s Optimize parameter *)

let optim_ref = ref true

let optim () = !optim_ref 

let _ = declare_bool_option 
	  {optsync = true; 
	   optname = "Extraction Optimize";
	   optkey = SecondaryTable ("Extraction", "Optimize");
	   optread = optim; 
	   optwrite = (:=) optim_ref}


(*s Set and Map over global reference *)

module Refset = 
  Set.Make(struct type t = global_reference let compare = compare end)

module Refmap = 
  Map.Make(struct type t = global_reference let compare = compare end)

(*s Auxiliary functions *) 

let is_constant r = match r with 
  | ConstRef _ -> true
  | _ -> false

let check_constant r = 
  if (is_constant r) then r 
  else errorlabstrm "extract_constant"
	(Printer.pr_global r ++ spc () ++ str "is not a constant.") 

(*s Target Language *)

type lang = Ocaml | Haskell | Scheme | Toplevel

let lang_ref = ref Ocaml

let lang () = !lang_ref

let (extr_lang,_) = 
  declare_object ("Extraction Lang", 
		  {cache_function = (fun (_,l) -> lang_ref := l);
		   load_function = (fun (_,l) -> lang_ref := l);
		   open_function = (fun _ -> ());
		   export_function = (fun x -> Some x) })

let _ = declare_summary "Extraction Lang" 
	  { freeze_function = (fun () -> !lang_ref);
	    unfreeze_function = ((:=) lang_ref);
	    init_function = (fun () -> lang_ref := Ocaml);
	    survive_section = true }  

let extraction_language x = add_anonymous_leaf (extr_lang x)

(*s Table for custom inlining *)

let empty_inline_table = (Refset.empty,Refset.empty)

let inline_table = ref empty_inline_table

let to_inline r = Refset.mem r (fst !inline_table)

let to_keep r = Refset.mem r (snd !inline_table)

let add_inline_entries b l = 
  let f b = if b then Refset.add else Refset.remove in 
  let i,k = !inline_table in 
  inline_table := 
     (List.fold_right (f b) l i), 
     (List.fold_right (f (not b)) l k)

(*s Registration of operations for rollback. *)

let (inline_extraction,_) = 
  declare_object ("Extraction Inline",
		  { cache_function = (fun (_,(b,l)) -> add_inline_entries b l);
		    load_function = (fun (_,(b,l)) -> add_inline_entries b l);
		    open_function = (fun _ -> ());
		    export_function = (fun x -> Some x) })

let _ = declare_summary "Extraction Inline"
	  { freeze_function = (fun () -> !inline_table);
	    unfreeze_function = ((:=) inline_table);
	    init_function = (fun () -> inline_table := empty_inline_table);
	    survive_section = true }

(*s Grammar entries. *)

let extraction_inline b vl =
  let refs = List.map (fun x -> check_constant (Nametab.global x)) vl in 
  add_anonymous_leaf (inline_extraction (b,refs))

(*s Printing part *)

let print_extraction_inline () = 
  let (i,n)= !inline_table in 
  let i'= Refset.filter is_constant i in 
  msg 
    (str "Extraction Inline:" ++ fnl () ++ 
     Refset.fold
       (fun r p -> 
	  (p ++ str "   " ++ Printer.pr_global r ++ fnl ())) i' (mt ()) ++
     str "Extraction NoInline:" ++ fnl () ++ 
     Refset.fold
       (fun r p -> 
	  (p ++ str "   " ++ Printer.pr_global r ++ fnl ())) n (mt ()))

(*s Reset part *)

let (reset_inline,_) = 
  declare_object
    ("Reset Extraction Inline", 
     {  cache_function = (fun (_,_)-> inline_table :=  empty_inline_table);
	load_function = (fun (_,_)-> inline_table :=  empty_inline_table); 
	open_function = (fun _ -> ());
	export_function = (fun x -> Some x) })

let reset_extraction_inline () = add_anonymous_leaf (reset_inline ())

(*s Table for direct ML extractions. *)

type kind = Term | Type | Ind | Construct 

let check_term_or_type r = match r with 
  | ConstRef sp -> 
      let env = Global.env () in 
      let typ = whd_betadeltaiota env (Environ.constant_type env sp) in 
      (match kind_of_term typ with 
	 | Sort _ -> (r,Type)
	 | _ -> if not (is_arity env typ) then (r,Term)
	   else errorlabstrm "extract_constant"
	     (Printer.pr_global r ++ spc () ++ 
	      str "is a type scheme, not a type."))
  | _ -> errorlabstrm "extract_constant"
	(Printer.pr_global r ++ spc () ++ str "is not a constant.") 

let empty_extractions = (Refmap.empty, Refset.empty)

let extractions = ref empty_extractions

let ml_extractions () = snd !extractions

let ml_term_extractions () = 
  Refmap.fold (fun r (k,s) l -> if k=Term then (r,s)::l else l)
    (fst !extractions) []

let ml_type_extractions () = 
  Refmap.fold (fun r (k,s) l -> if k=Type then (r,s)::l else l) 
    (fst !extractions) []
    
let add_ml_extraction r k s = 
  let (map,set) = !extractions in
  extractions := (Refmap.add r (k,s) map, Refset.add r set)

let is_ml_extraction r = Refset.mem r (snd !extractions)

let find_ml_extraction r = snd (Refmap.find r (fst !extractions))

(*s Registration of operations for rollback. *)

let (in_ml_extraction,_) = 
  declare_object 
    ("ML extractions",
     { cache_function = (fun (_,(r,k,s)) -> add_ml_extraction r k s);
       load_function = (fun (_,(r,k,s)) -> add_ml_extraction r k s);
       open_function = (fun _ -> ());
       export_function = (fun x -> Some x) })
    
let _ = declare_summary "ML extractions"
	  { freeze_function = (fun () -> !extractions);
	    unfreeze_function = ((:=) extractions);
	    init_function = (fun () -> extractions := empty_extractions);
	    survive_section = true }


(*s Grammar entries. *)

let extract_constant_inline inline qid s =
  let r,k = check_term_or_type (Nametab.global qid) in
  add_anonymous_leaf (inline_extraction (inline,[r]));
  add_anonymous_leaf (in_ml_extraction (r,k,s))

let extract_inductive qid (id2,l2) =
  let r = Nametab.global qid in match r with
  | IndRef ((sp,i) as ip) ->
      let mib = Global.lookup_mind sp in
      let n = Array.length mib.mind_packets.(i).mind_consnames in
      if n <> List.length l2 then
	error "Not the right number of constructors.";
      add_anonymous_leaf (inline_extraction (true,[r]));
      add_anonymous_leaf (in_ml_extraction (r,Ind,id2));
      list_iter_i
	(fun j s -> 
	   let r = ConstructRef (ip,succ j) in 
	   add_anonymous_leaf (inline_extraction (true,[r]));
	   add_anonymous_leaf (in_ml_extraction (r,Construct,s))) l2
  | _ -> 
      errorlabstrm "extract_inductive"
	(Printer.pr_global r ++ spc () ++ str "is not an inductive type.")