aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/extraction/mlutil.ml
blob: 32ad5053ba25020a4235af92dd016279668e1639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

open Pp
open Names
open Term
open Declarations
open Util
open Miniml
open Nametab
open Table
open Options

(*s Exceptions. *)

exception Found
exception Impossible

(*s Dummy names. *)

let anonymous = id_of_string "x"
let prop_name = id_of_string "_"

let no_prop_name = 
  List.map (fun i -> if i=prop_name then anonymous else i)

(*s In an ML type, update the arguments to all inductive types [(sp,_)] *)  

let rec update_args sp vl = function  
  | Tapp ( Tglob r :: l ) -> 
      (match r with 
	| IndRef (s,_) when s = sp -> Tapp ( Tglob r :: l @ vl )
	| _ -> Tapp (Tglob r :: (List.map (update_args sp vl) l)))
  | Tapp l -> Tapp (List.map (update_args sp vl) l) 
  | Tarr (a,b)-> 
      Tarr (update_args sp vl a, update_args sp vl b)
  | a -> a

(*s Informative singleton optimization *)

(* We simplify informative singleton inductive, i.e. an inductive with one 
   constructor which has one informative argument. *) 

let rec type_mem r0 = function 
    | Tglob r when r=r0 -> true
    | Tapp l -> List.exists (type_mem r0) l
    | Tarr (a,b) -> (type_mem r0 a) || (type_mem r0 b)
    | _ -> false

let singletons = ref Refset.empty

let is_singleton r = Refset.mem r !singletons 

let add_singleton r = singletons:= Refset.add r !singletons

let clear_singletons () = singletons:= Refset.empty

(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
    the list [idn;...;id1] and the term [t]. *)

let collect_lams = 
  let rec collect acc = function
    | MLlam(id,t) -> collect (id::acc) t
    | x           -> acc,x
  in collect []

(* [collect_n_lams] does the same for a precise number of [MLlam] *)

let collect_n_lams = 
  let rec collect acc n t = 
    if n = 0 then acc,t 
    else match t with 
      | MLlam(id,t) -> collect (id::acc) (n-1) t
      | _ -> assert false
  in collect [] 

(* [remove_n_lams] just remove some [MLlam] *)

let rec remove_n_lams n t = 
  if n = 0 then t  
  else match t with 
      | MLlam(_,t) -> remove_n_lams (n-1) t
      | _ -> assert false

(* [nb_lams] gives the number of head [MLlam] *)

let rec nb_lams = function 
  | MLlam(_,t) -> succ (nb_lams t)
  | _ -> 0 

(*s [named_lams] does the converse of [collect_lams] *)

let rec named_lams a = function 
  | [] -> a 
  | id :: ids -> named_lams (MLlam(id,a)) ids

(* The same in anonymous version. *)

let rec anonym_lams a = function 
  | 0 -> a 
  | n -> anonym_lams (MLlam(anonymous,a)) (pred n)

(*s The following function create [MLrel n;...;MLrel 1] *)

let rec make_eta_args n = 
  if n = 0 then [] else (MLrel n)::(make_eta_args (pred n))

(* This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)

let rec test_eta_args_lift k n = function 
  | [] -> n=0
  | a :: q -> (a = (MLrel (k+n))) && (test_eta_args_lift k (pred n) q)
  
(*s Generic functions overs [ml_ast]. *)

(* [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care 
   of the number of bingings crossed before reaching the [MLrel]. *)

let ast_iter f = 
  let rec iter n = function
    | MLrel i -> f (i-n)
    | MLlam (_,a) -> iter (n+1) a
    | MLletin (_,a,b) -> iter n a; iter (n+1) b
    | MLcase (a,v) ->
	iter n a; Array.iter (fun (_,l,t) -> iter (n + (List.length l)) t) v
    | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
    | MLapp (a,l) -> iter n a; List.iter (iter n) l
    | MLcons (_,l) ->  List.iter (iter n) l
    | MLcast (a,_) -> iter n a
    | MLmagic a -> iter n a
    | MLglob _ | MLexn _ | MLprop | MLarity -> ()
  in iter 0 

(* Map over asts. *)

let ast_map_case f (c,ids,a) = (c,ids,f a)

let ast_map f = function
  | MLlam (i,a) -> MLlam (i, f a)
  | MLletin (i,a,b) -> MLletin (i, f a, f b)
  | MLcase (a,v) -> MLcase (f a, Array.map (ast_map_case f) v)
  | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
  | MLapp (a,l) -> MLapp (f a, List.map f l)
  | MLcons (c,l) -> MLcons (c, List.map f l)
  | MLcast (a,t) -> MLcast (f a, t)
  | MLmagic a -> MLmagic (f a)
  | MLrel _ | MLglob _ | MLexn _ | MLprop | MLarity as a -> a

(* Map over asts, with binding depth as parameter. *)

let ast_map_lift_case f n (c,ids,a) = (c,ids, f (n+(List.length ids)) a)

let ast_map_lift f n = function 
  | MLlam (i,a) -> MLlam (i, f (n+1) a)
  | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
  | MLcase (a,v) -> MLcase (f n a,Array.map (ast_map_lift_case f n) v)
  | MLfix (i,ids,v) -> 
      let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
  | MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
  | MLcons (c,l) -> MLcons (c, List.map (f n) l)
  | MLcast (a,t) -> MLcast (f n a, t)
  | MLmagic a -> MLmagic (f n a)
  | MLrel _ | MLglob _ | MLexn _ | MLprop | MLarity as a -> a	

(*s [occurs k t] returns true if [(Rel k)] occurs in [t]. *)

let occurs k t = 
  try ast_iter (fun i -> if i = k then raise Found) t; false with Found -> true

(*s [occurs_itvl k k' t] return true if there is a [(Rel i)] 
   in [t] with [k<=i<=k'] *)

let occurs_itvl k k' t = 
  try 
    ast_iter (fun i -> if (k <= i) && (i <= k') then raise Found) t; false 
  with Found -> true

(*s Number of occurences of [Rel k] and [Rel 1] in [t]. *)

let nb_occur_k k t =
  let cpt = ref 0 in 
  ast_iter (fun i -> if i = k then incr cpt) t;
  !cpt

let nb_occur t = nb_occur_k 1 t

(*s Lifting on terms.
    [ml_lift k t] lifts the binding depth of [t] across [k] bindings. *)

let ml_lift k t = 
  let rec liftrec n = function
    | MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
    | a -> ast_map_lift liftrec n a
  in if k = 0 then t else liftrec 0 t

let ml_pop t = ml_lift (-1) t

(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ... 
  Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)

let permut_rels k k' = 
  let rec permut n = function
    | MLrel i as a ->
	let i' = i-n in
	if i'<1 || i'>k+k' then a 
	else if i'<=k then MLrel (i+k')
	else MLrel (i-k)
    | a -> ast_map_lift permut n a
  in permut 0  

(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t]. 
    Lifting (of one binder) is done at the same time. *)

let rec ml_subst e =
  let rec subst n = function
    | MLrel i as a ->
	let i' = i-n in 
	if i'=1 then ml_lift n e
	else if i'<1 then a 
	else MLrel (i-1)
    | a -> ast_map_lift subst n a
  in subst 0

(*s Simplification of any [MLapp (MLapp (_,_),_)] *)

let rec merge_app = function 
  | MLapp (f,l) -> 
      let f = merge_app f in 
      let l = List.map merge_app l in 
      (match f with 
	 | MLapp (f',l') -> MLapp (f',l' @ l)
	 | _ -> MLapp (f,l))
  | a -> ast_map merge_app a

(*s [check_and_generalize (r0,l,c)] transforms any [MLcons(r0,l)] in [MLrel 1]
  and raises [Impossible] if any variable in [l] occurs outside such a 
  [MLcons] *)

let check_and_generalize (r0,l,c) = 
  let nargs = List.length l in 
  let rec genrec n = function 
    | MLrel i as c -> 
	let i' = i-n in 
	if i'<1 then c 
	else if i'>nargs then MLrel (i-nargs+1) 
	else raise Impossible
    | MLcons(r,args) when r=r0 && (test_eta_args_lift n nargs args) -> MLrel (n+1) 
    | a -> ast_map_lift genrec n a
  in genrec 0 c  

(*s Auxialiary functions used during simplifications of [MLcase]. *)

let check_generalizable_case br = 
  let f = check_and_generalize br.(0) in 
  for i = 1 to Array.length br - 1 do 
    if check_and_generalize br.(i) <> f then raise Impossible 
  done; f

let check_constant_case br = 
  if br = [||] then raise Impossible; 
  let (r,l,t) = br.(0) in
  let n = List.length l in 
  if occurs_itvl 1 n t then raise Impossible; 
  let cst = ml_lift (-n) t in 
  for i = 1 to Array.length br - 1 do 
    let (r,l,t) = br.(i) in
    let n = List.length l in
    if (occurs_itvl 1 n t) || (cst <> (ml_lift (-n) t)) 
    then raise Impossible
  done; cst

let rec permut_case_fun br acc = 
  let (_,_,t0) = br.(0) in 
  let nb = ref (nb_lams t0) in 
  Array.iter (fun (_,_,t) -> let n = nb_lams t in if n < !nb then nb:=n) br;
  let ids,_ = collect_n_lams !nb t0 in 
  for i = 0 to Array.length br - 1 do 
    let (r,l,t) = br.(i) in 
    let t = permut_rels !nb (List.length l) (remove_n_lams !nb t) 
    in br.(i) <- (r,l,t)
  done; ids

(*s Generalized iota-reduction. *)

(* Definition of a generalized iota-redex: it's a [MLcase(e,_)] 
   with [(is_iota_gen e)=true]. *)

let rec is_iota_gen = function 
  | MLcons _ -> true
  | MLcase(_,br)-> array_for_all (fun (_,_,t)->is_iota_gen t) br
  | _ -> false

let constructor_index = function
  | ConstructRef (_,j) -> pred j
  | _ -> assert false

(* Any generalized iota-redex is transformed into beta-redexes. *)

let iota_gen br = 
  let rec iota k = function 
    | MLcons (r,a) ->
	let (_,ids,c) = br.(constructor_index r) in
	let c = List.fold_right (fun id t -> MLlam (id,t)) ids c in
	let c = ml_lift k c in 
	MLapp (c,a)
    | MLcase(e,br') -> 
	let new_br = 
	  Array.map (fun (n,i,c)->(n,i,iota (k+(List.length i)) c)) br'
	in MLcase(e, new_br)
    | _ -> assert false
  in iota 0 

(*s Some beta-iota reductions + simplifications. *)

let is_atomic = function 
  | MLrel _ | MLglob _ | MLexn _ | MLprop | MLarity -> true
  | _ -> false

let rec simplify o = function
  | MLapp (f, []) ->
      simplify o f
  | MLapp (f, a) -> 
      simplify_app o (List.map (simplify o) a) (simplify o f)
  | MLcons (r,[t]) when is_singleton r -> simplify o t 
	(* Informative singleton *) 
  | MLcase (e,[||]) ->
      MLexn "empty inductive"
  | MLcase (e,[|r,[i],c|]) when is_singleton r -> (* Informative singleton *)
      simplify o (MLletin (i,e,c))
  | MLcase (e,br) ->
      let br = Array.map (fun (n,l,t) -> (n,l,simplify o t)) br in 
      simplify_case o br (simplify o e) 
  | MLletin(_,c,e) when (is_atomic c) || (nb_occur e <= 1) -> 
      (* Expansion of a letin in special cases *)
      simplify o (ml_subst c e)
  | MLfix(i,ids,c) as t when o -> 
      let n = Array.length ids in 
      if occurs_itvl 1 n c.(i) then 
	MLfix (i, ids, Array.map (simplify o) c)
      else simplify o (ml_lift (-n) c.(i)) (* Dummy fixpoint *)
  | a -> ast_map (simplify o) a 
	
and simplify_app o a = function  
  | MLlam (id,t) -> (* Beta redex *)
      (match nb_occur t with
	 | 0 -> simplify o (MLapp (ml_pop t, List.tl a))
	 | 1 when o -> 
	     simplify o (MLapp (ml_subst (List.hd a) t, List.tl a))
	 | _ -> 
	     let a' = List.map (ml_lift 1) (List.tl a) in
	     simplify o (MLletin (id, List.hd a, MLapp (t, a'))))
  | MLletin (id,e1,e2) -> 
      (* Application of a letin: we push arguments inside *)
      MLletin (id, e1, simplify o (MLapp (e2, List.map (ml_lift 1) a)))
  | MLcase (e,br) -> (* Application of a case: we push arguments inside *)
      let br' = 
	Array.map 
      	  (fun (n,l,t) -> 
	     let k = List.length l in
	     let a' = List.map (ml_lift k) a in
      	     (n, l, simplify o (MLapp (t,a')))) br 
      in simplify o (MLcase (e,br'))
  | f -> MLapp (f,a)

and simplify_case o br e = 
  if (not o) then MLcase (e,br)
  else 
    if (is_iota_gen e) then (* Generalized iota-redex *)
      simplify o (iota_gen br e)
    else 
      try (* Does a term [f] exist such as each branch is [(f e)] ? *)
	let f = check_generalizable_case br in 
	simplify o (MLapp (MLlam (anonymous,f),[e]))
      with Impossible -> 
	try (* Is each branch independant of [e] ? *) 
	  check_constant_case br 
	with Impossible ->
	  if (is_atomic e) then (* Swap the case and the lam if possible *)
	    let ids = no_prop_name (permut_case_fun br []) in 
	    let n = List.length ids in 
	    if n = 0 then MLcase (e, br) 
	    else named_lams (MLcase (ml_lift n e, br)) ids
	  else MLcase (e, br)

let normalize a = simplify (optim()) (merge_app a)

(*s Special treatment of non-mutual fixpoint for pretty-printing purpose. *)

let optimize_fix a = 
  if not (optim()) then a 
  else
    let ids,a' = collect_lams a in 
    let n = List.length ids in 
    if n = 0 then a 
    else  
      (match a' with 
	 | MLfix(_,[|f|],[|c|]) ->
	     let new_f = MLapp (MLrel (n+1),make_eta_args n) in 
	     let new_c = named_lams (ml_subst new_f c) ids
	     in MLfix(0,[|f|],[|new_c|])
	 | MLapp(a',args) ->
	     let m = List.length args in 
	     (match a' with 
		| MLfix(_,[|_|],[|_|]) when 
		    (test_eta_args_lift 0 n args) && not (occurs_itvl 1 m a') 
		    -> a'
		| MLfix(_,[|f|],[|c|]) -> 
		    let v = Array.make n 0 in 
		    for i=0 to (n-1) do v.(i)<-i done;
		    let aux i = function 
			MLrel j when v.(j-1)>=0 -> v.(j-1)<-(-i-1)
		      | _ -> raise Impossible
		    in
		    (try 
		       list_iter_i aux args; 
		       let args_f = 
			 List.rev_map 
			   (fun i -> MLrel (i+m+1)) (Array.to_list v) in
		       let new_f = 
			 anonym_lams (MLapp (MLrel (n+m+1),args_f)) m in  
		       let new_c = 
			 named_lams 
			   (normalize (MLapp ((ml_subst new_f c),args))) ids
		       in MLfix(0,[|f|],[|new_c|])
		     with Impossible -> a) 
		| _ -> a)
	 | _ -> a)


(*s Utility functions used for the decision of expansion. *)

let rec ml_size = function
  | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
  | MLlam(_,t) -> 1 + ml_size t
  | MLcons(_,l) -> ml_size_list l
  | MLcase(t,pv) -> 
      1 + ml_size t + (Array.fold_right (fun (_,_,t) a -> a + ml_size t) pv 0)
  | MLfix(_,_,f) -> ml_size_array f
  | MLletin (_,_,t) -> ml_size t
  | MLcast (t,_) -> ml_size t
  | MLmagic t -> ml_size t
  | _ -> 0

and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l

and ml_size_array l = Array.fold_left (fun a t -> a + ml_size t) 0 l

let is_fix = function MLfix _ -> true | _ -> false

let rec is_constr = function
  | MLcons _   -> true
  | MLlam(_,t) -> is_constr t
  | _          -> false

(*s Strictness *)

(* A variable is strict if the evaluation of the whole term implies
   the evaluation of this variable. Non-strict variables can be found 
   behind Match, for example. Expanding a term [t] is a good idea when 
   it begins by at least one non-strict lambda, since the corresponding 
   argument to [t] might be unevaluated in the expanded code. *)

exception Toplevel

let lift n l = List.map ((+) n) l

let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l 

(* This function returns a list of de Bruijn indices of non-strict variables,
   or raises [Toplevel] if it has an internal non-strict variable. 
   In fact, not all variables are checked for strictness, only the ones which 
   de Bruijn index is in the candidates list [cand]. The flag [add] controls 
   the behaviour when going through a lambda: should we add the corresponding 
   variable to the candidates?  We use this flag to check only the external 
   lambdas, those that will correspond to arguments. *)

let rec non_stricts add cand = function 
  | MLlam (id,t) -> 
      let cand = lift 1 cand in
      let cand = if add then 1::cand else cand in
      pop 1 (non_stricts add cand t)
  | MLrel n -> 
      List.filter ((<>) n) cand  
  | MLapp (MLrel n, _) -> 
      List.filter ((<>) n) cand
	(* In [(x y)] we say that only x is strict. Cf [sig_rec]. 
	   We may gain something if x is replaced by a function like
	   a projection *)
  | MLapp (t,l)-> 
      let cand = non_stricts false cand t in 
      List.fold_left (non_stricts false) cand l 
  | MLcons (_,l) -> 
      List.fold_left (non_stricts false) cand l
  | MLletin (_,t1,t2) -> 
      let cand = non_stricts false cand t1 in 
      pop 1 (non_stricts add (lift 1 cand) t2)
  | MLfix (_,i,f)-> 
      let n = Array.length i in
      let cand = lift n cand in 
      let cand = Array.fold_left (non_stricts false) cand f in 
      pop n cand
  | MLcase (t,v) -> 
      (* The only interesting case: for a variable to be non-strict, 
	 it is sufficient that it appears non-strict in at least one branch,
	 so he make an union (in fact a merge). *)
      let cand = non_stricts false cand t in 
      Array.fold_left 
	(fun c (_,i,t)-> 
	   let n = List.length i in 
	   let cand = lift n cand in 
	   let cand = pop n (non_stricts add cand t) in
	   Sort.merge (<=) cand c) [] v
	(* [merge] may duplicates some indices, but I don't mind. *)
  | MLcast (t,_) -> 
      non_stricts add cand t
  | MLmagic t -> 
      non_stricts add cand t
  | _ -> 
      cand

(* The real test: we are looking for internal non-strict variables, so we start
   with no candidates, and the only positive answer is via the [Toplevel] 
   exception. *)

let is_not_strict t = 
  try 
    let _ = non_stricts true [] t in false
  with 
    | Toplevel -> true

(*s Expansion decision *)

(* [expansion_test] answers the following question: 
   If we could expand [t] (the user said nothing special), 
   should we expand ? 
   
   We don't expand fixpoints, but always inductive constructors
   and small terms.
   Last case of expansion is a term with at least one non-strict 
   variable (i.e. a variable that may not be evaluated). *)

let expansion_test t = 
  (not (is_fix t))
  &&
  ((is_constr t) ||
   (ml_size t < 3) ||
   ((ml_size t < 12) && (is_not_strict t)))

(* If the user doesn't say he wants to keep [t], we expand in two cases:
   \begin{itemize}
   \item the user explicitly requests it 
   \item [expansion_test] answers that the expansion is a good idea, and 
   we are free to act (AutoInline is set)
   \end{itemize} *)

let expand strict_lang r t = 
  (not (to_keep r)) (* The user DOES want to keep it *)
  &&
  ((to_inline r) (* The user DOES want to expand it *) 
   || 
   (auto_inline () && strict_lang && expansion_test t)) 

(*s Optimization *)

let subst_glob_ast r m = 
  let rec substrec = function
    | MLglob r' as t -> if r = r' then m else t
    | t -> ast_map substrec t
  in
  substrec

let subst_glob_decl r m = function
  | Dglob(r',t') -> Dglob(r', subst_glob_ast r m t')
  | d -> d

let warning_expansion r = 
  wARN (hOV 0 [< 'sTR "The constant"; 'sPC;
		 Printer.pr_global r; 
(*i    'sTR (" of size "^ (string_of_int (ml_size t))); i*)
    'sPC; 'sTR "is expanded." >])

let warning_expansion_must r = 
  wARN (hOV 0 [< 'sTR "The constant"; 'sPC;
		 Printer.pr_global r; 
    'sPC; 'sTR "must be expanded." >])

let print_ml_decl prm (r,_) = 
  not (to_inline r) || List.mem r prm.to_appear

let add_ml_decls prm decls = 
  let l = sorted_ml_extractions () in 
  let l = List.filter (print_ml_decl prm) l in 
  let l = List.map (fun (r,s)-> Dcustom (r,s)) l in 
  (List.rev l @ decls)

let strict_language = function
  | "ocaml" -> true
  | "haskell" -> false
  | _ -> assert false

let rec empty_ind = function 
  | [] -> [],[]
  | t :: q -> let l,l' = empty_ind q in 
    (match t with 
       | ids,r,[] -> Dabbrev (r,ids,Texn "empty inductive") :: l,l'
       | _ -> l,t::l')

let is_exn = function 
  | MLexn _ -> true
  | _ -> false

let rec optim prm = function
  | [] -> 
      []
  | ( Dabbrev (r,_,Tarity) |
	Dabbrev(r,_,Tprop) | 
	  Dglob(r,MLarity) | 
	    Dglob(r,MLprop) ) as d :: l ->
      if List.mem r prm.to_appear then
	d :: (optim prm l) 
      else optim prm l
  | Dglob (r,t) :: l ->
      let t = normalize t in
      let b = expand (strict_language prm.lang) r t
      and b' = is_exn t in 
      let l = if b then 
	begin
	  if not (prm.toplevel) then if_verbose warning_expansion r;
	  List.map (subst_glob_decl r t) l
	end
      else if b' then 
	begin 
	  if not (prm.toplevel) then if_verbose warning_expansion_must r;
          List.map (subst_glob_decl r t) l
	end
      else l in 
      if not b' && 
	(not b || prm.mod_name <> None || List.mem r prm.to_appear) then 
	let t = optimize_fix t in
	Dglob (r,t) :: (optim prm l)
      else 
	optim prm l
  | (Dtype ([],_) | Dabbrev _ | Dcustom _) as d :: l -> 
      d :: (optim prm l)
  | Dtype ([ids,r,[r0,[t0]]],false) :: l when not (type_mem r t0) ->
      (* Detection of informative singleton. *)
      add_singleton r0; 
      Dabbrev (r, ids, t0) :: (optim prm l)
  | Dtype(il,b) :: l -> 
      (* Detection of empty inductives. *)
      let l1,l2 = empty_ind il in 
      if l2 = [] then l1 @ (optim prm l) 
      else l1 @ (Dtype(l2,b) :: (optim prm l))


let optimize prm l = clear_singletons(); optim prm l