aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/extraction/extraction.ml
blob: dafd0747a9c9e3ebb3bf0be605dc33b48de27ef9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i $Id$ i*)

open Pp
open Util
open Names
open Term
open Declarations
open Environ
open Reduction
open Inductive
open Instantiate
open Miniml
open Mlutil
open Closure
open Summary

(*s Extraction results. *)

(* The [signature] type is used to know how many arguments a CIC
   object expects, and what these arguments will become in the ML
   object. *)
   
(* The flag [type_var] gives us information about an identifier
   coming from a Lambda or a Product:
   \begin{itemize}
   \item [Arity] denotes identifiers of type an arity of some sort [Set],
     [Prop] or [Type], that is $(x_1:X_1)\ldots(x_n:X_n)s$ with [s = Set],
     [Prop] or [Type] 
   \item [NotArity] denotes the other cases. It may be inexact after 
   instanciation. For example [(X:Type)X] is [NotArity] and may give [Set]
   after instanciation, which is rather [Arity]
   \item [Logic] denotes identifiers of type an arity of sort [Prop], 
     or of type of type [Prop]
   \item [Info] is the opposite. The same example [(X:Type)X] shows 
     that an [Info] term might in fact be [Logic] later on. 
   \end{itemize} *)

type info = Logic | Info

type arity = Arity | NotArity

type type_var = info * arity

let logic_arity = (Logic, Arity)
let info_arity = (Info, Arity)
let logic = (Logic, NotArity)
let default = (Info, NotArity)

type signature = type_var list

(* When dealing with CIC contexts, we maintain corresponding contexts 
   telling whether a variable will be kept or will disappear *)

type extraction_context = bool list

(* The [type_extraction_result] is the result of the [extract_type] function
   that extracts a CIC object into an ML type. It is either: 
   \begin{itemize}
   \item a real ML type, followed by its signature and its list of type 
   variables (['a],\ldots)
   \item a CIC arity, without counterpart in ML
   \item a non-informative type, which will receive special treatment
   \end{itemize} *)

type type_extraction_result =
  | Tmltype of ml_type * signature * identifier list
  | Tarity
  | Tprop

(* The [term_extraction_result] is the result of the [extract_term]
   function that extracts a CIC object into an ML term *)

type term_extraction_result = 
  | Rmlterm of ml_ast
  | Rprop

(* The [extraction_result] is the result of the [extract_constr]
   function that extracts any CIC object. It is either a ML type, a ML
   object or something non-informative. *)

type extraction_result =
  | Emltype of ml_type * signature * identifier list
  | Emlterm of ml_ast

(*s Utility functions. *)

let whd_betaiotalet = clos_norm_flags (UNIFORM, red_add betaiota_red ZETA)

let is_axiom sp = (Global.lookup_constant sp).const_body = None

type lamprod = Lam | Prod

let flexible_name = id_of_string "flex"

let id_of_name = function
  | Anonymous -> id_of_string "x"
  | Name id   -> id

(* [get_arity c] returns [Some s] if [c] is an arity of sort [s], 
   and [None] otherwise. *)

let rec get_arity env c =
  match kind_of_term (whd_betadeltaiota env Evd.empty c) with
    | IsProd (x,t,c0) -> get_arity (push_rel_assum (x,t) env) c0
    | IsCast (t,_) -> get_arity env t
    | IsSort s -> Some s
    | _ -> None

(* idem, but goes through [Lambda] as well. Cf. [find_conclusion]. *)

let rec get_lam_arity env c =
  match kind_of_term (whd_betadeltaiota env Evd.empty c) with
    | IsLambda (x,t,c0) -> get_lam_arity (push_rel_assum (x,t) env) c0
    | IsProd (x,t,c0) -> get_lam_arity (push_rel_assum (x,t) env) c0
    | IsCast (t,_) -> get_lam_arity env t
    | IsSort s -> Some s
    | _ -> None

(*s Detection of non-informative parts. *)

let is_non_info_sort env s = is_Prop (whd_betadeltaiota env Evd.empty s)

let is_non_info_type env t = 
  let s = Typing.type_of env Evd.empty t in
  (is_non_info_sort env s) || ((get_arity env t) = (Some (Prop Null)))

let is_non_info_term env c = 
  let t = Typing.type_of env Evd.empty c in
  let s = Typing.type_of env Evd.empty t in
  (is_non_info_sort env s) ||
  match get_arity env t with 
    | Some (Prop Null) -> true
    | Some (Type _) -> (get_lam_arity env c = Some (Prop Null))
    | _ -> false


(* The next function transforms a type [t] into a [type_var] flag. *)

let v_of_arity env t = match get_arity env t with
  | Some (Prop Null) -> logic_arity
  | Some _ -> info_arity
  | _ -> if is_non_info_type env t then logic else default
      
let rec nb_params_to_keep env = function
  | [] -> 0
  | (n,t) :: l ->
      let v = v_of_arity env t in
      let env' = push_rel (n,None,t) env in
      (nb_params_to_keep env' l) + (if snd v = NotArity then 1 else 0)

(* The next function transforms an arity into a signature. It is used 
   for example with the types of inductive definitions, which are known
   to be already in arity form. *)

let rec signature_of_arity env c = match kind_of_term c with
  | IsProd (n, t, c') ->
      let env' = push_rel (n,None,t) env in
      (v_of_arity env t) :: (signature_of_arity env' c')
  | IsSort _ -> []
  | _ -> assert false

let rec vl_of_binders env vl b = match b with 
  | [] -> vl
  | (n,t) :: l 
      when ((v_of_arity env t) = info_arity) -> 
	let id = next_ident_away (id_of_name n) vl in 
	let env' = push_rel (Name id, None, t) env in 
	vl_of_binders env' (id :: vl) l
  | (n,t) :: l ->
      vl_of_binders (push_rel (n, None, t) env) vl l

let rec vl_of_arity env vl c = 
  vl_of_binders env vl (List.rev (fst (decompose_prod c)))

(* [list_of_ml_arrows] applied to the ML type [a->b->]\dots[z->t]
   returns the list [[a;b;...;z]]. It is used when making the ML types
   of inductive definitions. We also suppress [Prop] parts. *)

let rec list_of_ml_arrows = function
  | Tarr (Miniml.Tprop, b) -> list_of_ml_arrows b
  | Tarr (a, b) -> a :: list_of_ml_arrows b
  | t -> []

(* [renum_db] gives the new de Bruijn indices for variables in an ML
   term.  This translation is made according to an [extraction_context]. *)
	
let renum_db ctx n = 
  let rec renum = function
    | (1, true  :: _) -> 1
    | (n, true  :: s) -> succ (renum (pred n, s))
    | (n, false :: s) -> renum (pred n, s)
    | _ -> assert false
  in
  renum (n, ctx)

(*s Environment for the bodies of some mutual fixpoints. *)

let rec push_many_rels_ctx keep_prop env ctx = function
  | (fi,ti) :: l -> 
      let v = v_of_arity env ti in
      let keep = (v = default) || (keep_prop && v = logic) in
      push_many_rels_ctx keep_prop (push_rel (fi,None,ti) env) (keep :: ctx) l
  | [] ->
      (env, ctx)

let fix_environment env ctx fl tl =
  let tl' = Array.mapi lift tl in
  push_many_rels_ctx true env ctx (List.combine fl (Array.to_list tl'))

(* Decomposition of a type beginning with at least n products when reduced *)

let decompose_prod_reduce n env c = 
  let c = 
    if nb_prod c >= n then 
      c 
    else 
      whd_betadeltaiota env Evd.empty c 
  in 
  decompose_prod_n n c

(* Decomposition of a function expecting n arguments at least. We eta-expanse
   if needed *)

let decompose_lam_eta n env c = 
  let dif = n - (nb_lam c) in 
  if dif <= 0 then 
    decompose_lam_n n c
  else 
    let tyc = Typing.type_of env Evd.empty c in
    let (type_binders,_) = decompose_prod_reduce n env tyc in
    let (binders, e) = decompose_lam c in 
    let binders = (list_firstn dif type_binders) @ binders in 
    let e = applist (lift dif e, List.rev_map mkRel (interval 1 dif)) in
    (binders, e)

let rec abstract_n n a = 
  if n = 0 then a else MLlam (anonymous, ml_lift 1 (abstract_n (n-1) a))

let dest_fix_cofix = function
  | IsFix ((_,i),(ti,fi,ci)) -> (false,i,ti,fi,ci)
  | IsCoFix (i,(ti,fi,ci)) -> (true,i,ti,fi,ci)
  | _ -> assert false

(*s Eta-expansion to bypass ML type inference limitations (due to possible
    polymorphic references, the ML type system does not generalize all
    type variables that could be generalized). *)

let eta_expanse ec = function 
  | Tmltype (Tarr _, _, _) ->
      (match ec with
	 | Emlterm (MLlam _) -> ec
	 | Emlterm a -> Emlterm (MLlam (anonymous, MLapp (a, [MLrel 1])))
	 | _ -> ec)
  | _ -> ec

(*s Error message when extraction ends on an axiom. *)

let axiom_message sp =
  errorlabstrm "axiom_message"
    [< 'sTR "You must specify an extraction for axiom"; 'sPC; 
       pr_sp sp; 'sPC; 'sTR "first" >]

(*s Tables to keep the extraction of inductive types and constructors. *)

type inductive_extraction_result = 
  | Iml of signature * identifier list
  | Iprop
   
let inductive_extraction_table = 
  ref (Gmap.empty : (inductive_path, inductive_extraction_result) Gmap.t)

let add_inductive_extraction i e = 
  inductive_extraction_table := Gmap.add i e !inductive_extraction_table

let lookup_inductive_extraction i = Gmap.find i !inductive_extraction_table

type constructor_extraction_result = 
  | Cml of ml_type list * signature * int
  | Cprop

let constructor_extraction_table = 
  ref (Gmap.empty : (constructor_path, constructor_extraction_result) Gmap.t)

let add_constructor_extraction c e = 
  constructor_extraction_table := Gmap.add c e !constructor_extraction_table

let lookup_constructor_extraction i = Gmap.find i !constructor_extraction_table

let constant_table = 
  ref (Gmap.empty : (section_path, extraction_result) Gmap.t)

(* Tables synchronization. *)

let freeze () =
  !inductive_extraction_table, !constructor_extraction_table, !constant_table

let unfreeze (it,cst,ct) =
  inductive_extraction_table := it;
  constructor_extraction_table := cst;
  constant_table := ct

let _ = declare_summary "Extraction tables"
	  { freeze_function = freeze;
	    unfreeze_function = unfreeze;
	    init_function = (fun () -> ());
	    survive_section = true }

(*s Extraction of a type. *)

(* When calling [extract_type] we suppose that the type of [c] is an
   arity.  This is for example checked in [extract_constr]. 

   Relation with [v_of_arity]: it is less precise, since we do not 
   delta-reduce in [extract_type] in general.
   \begin{itemize}
   \item If [v_of_arity env t = NotArity,_], 
   then [extract_type env t] is a [Tmltype].
   \item If [extract_type env t = Tarity], then [v_of_arity env t = Arity,_]
   \end{itemize} *)

let rec extract_type env c =
  extract_type_rec env [] c [] 

and extract_type_rec env vl c args = 
  (* We accumulate the two contexts, the generated variable list *)
  let ty = Typing.type_of env Evd.empty (applist (c, args)) in
  (* Since [ty] is an arity, there is two non-informative case: 
     [ty] is an arity of sort [Prop], or 
     [c] has a non-informative head symbol *)
  match get_arity env ty with 
    | None -> 
	assert false (* Cf. precondition. *)
    | Some (Prop Null) ->
	Tprop 
    | Some _ -> extract_type_rec_info env vl c args
 
and extract_type_rec_info env vl c args = 
  match (kind_of_term (whd_betaiotalet env Evd.empty c)) with
    | IsSort _ ->
	assert (args = []); (* A sort can't be applied. *)
	Tarity 
    | IsProd (n,t,d) ->
	assert (args = []); (* A product can't be applied. *)
	extract_prod_lam env vl (n,t,d) Prod
    | IsLambda (n,t,d) ->
	assert (args = []); (* [c] is now in head normal form. *)
	extract_prod_lam env vl (n,t,d) Lam
    | IsApp (d, args') ->
	(* We just accumulate the arguments. *)
	extract_type_rec_info env vl d (Array.to_list args' @ args)
    | IsRel n -> 
	(match lookup_rel_value n env with
	   | Some t -> 
	       extract_type_rec_info env vl (lift n t) args  
	   | None ->
	       let id = id_of_name (fst (lookup_rel_type n env)) in 
	       Tmltype (Tvar id, [], vl))
    | IsConst (sp,a) when is_axiom sp -> 
	let id = next_ident_away (basename sp) vl in 
	Tmltype (Tvar id, [], id :: vl)
    | IsConst (sp,a) ->
	let cty = constant_type env Evd.empty (sp,a) in 
	if is_arity env Evd.empty cty then
	  (match extract_constant sp with 
	     | Emltype (Miniml.Tarity,_,_) -> Tarity
	     | Emltype (Miniml.Tprop,_,_) -> Tprop
	     | Emltype (mlt, sc, vlc) ->  
		 extract_type_app env vl (ConstRef sp,sc,vlc) args 
	     | Emlterm _ -> assert false) 
	else begin
	  (* We can't keep as ML type abbreviation a CIC constant 
	     which type is not an arity: we reduce this constant. *)
	  let cvalue = constant_value env (sp,a) in
	  extract_type_rec_info env vl (applist (cvalue, args)) []
	end
    | IsMutInd (spi,_) ->
	(match extract_inductive spi with 
	   |Iml (si,vli) -> 
	       extract_type_app env vl (IndRef spi,si,vli) args
	   |Iprop -> assert false
		 (* Cf. initial tests *))
    | IsMutCase _ 
    | IsFix _ | IsCoFix _ ->
	let id = next_ident_away flexible_name vl in
	Tmltype (Tvar id, [], id :: vl)
	  (* CIC type without counterpart in ML: we generate a 
	     new flexible type variable. *) 
    | IsCast (c, _) ->
	extract_type_rec_info env vl c args
    | _ -> 
	assert false

(* Auxiliary function used to factor code in lambda and product cases *)

and extract_prod_lam env vl (n,t,d) flag = 
  let tag = v_of_arity env t in
  let env' = push_rel (n, None, t) env in
  match tag,flag with
    | (Info, Arity), _ -> 
	  let id' = next_ident_away (id_of_name n) vl in 
	  let env' = push_rel (Name id', None, t) env in
	  (match extract_type_rec_info env' (id'::vl) d [] with 
	     | Tmltype (mld, sign, vl') -> Tmltype (mld, tag::sign, vl')
	     | et -> et)
    | (Logic, Arity), _ | _, Lam ->
	(match extract_type_rec_info  env' vl d [] with 
	   | Tmltype (mld, sign, vl') -> Tmltype (mld, tag::sign, vl')
	   | et -> et)
    | (Logic, NotArity), Prod ->
	  (match extract_type_rec_info env' vl d [] with 
	     | Tmltype (mld, sign, vl') ->
		 Tmltype (Tarr (Miniml.Tprop, mld), tag::sign, vl')
	     | et -> et)
    | (Info, NotArity), Prod ->
	(match extract_type_rec_info env' vl d [] with 
	   | Tmltype (mld, sign, vl') -> 
	       (match extract_type_rec_info env vl' t [] with
		  | Tprop | Tarity -> 
		      assert false 
			(* Cf. relation between [extract_type] and [v_of_arity] *)
		  | Tmltype (mlt,_,vl'') -> 
		      Tmltype (Tarr(mlt,mld), tag::sign, vl''))
	   | et -> et)
	
 (* Auxiliary function dealing with type application. 
    Precondition: [r] is of type an arity. *)
		  
and extract_type_app env vl (r,sc,vlc) args =
  let nargs = List.length args in
  assert (List.length sc >= nargs);
  (* [r] is of type an arity, so it can't be applied to more than n args, 
     where n is the number of products in this arity type. *)
  let (sign_args,sign_rem) = list_chop nargs sc in
  let (mlargs,vl') = 
    List.fold_right 
      (fun (v,a) ((args,vl) as acc) -> match v with
	 | _, NotArity -> acc
	 | Logic, Arity -> acc (* TO JUSTIFY *)
	 | Info, Arity -> match extract_type_rec_info env vl a [] with
	     | Tarity -> (Miniml.Tarity :: args, vl) 
  	           (* we pass a dummy type [arity] as argument *)
	     | Tprop -> (Miniml.Tprop :: args, vl)
	     | Tmltype (mla,_,vl') -> (mla :: args, vl'))
      (List.combine sign_args args) 
      ([],vl)
  in
  let nvlargs = List.length vlc - List.length mlargs in 
  assert (nvlargs >= 0);
  let vl'' = 
    List.fold_right 
      (fun id l -> (next_ident_away id l) :: l) 
      (list_firstn nvlargs vlc) vl'
  in
  let vlargs = 
    List.rev_map (fun i -> Tvar i) (list_firstn nvlargs vl'') in
  Tmltype (Tapp ((Tglob r) :: mlargs @ vlargs), sign_rem, vl'')
    

(*s Extraction of a term. 
    Precondition: [c] has a type which is not an arity. 
    This is normaly checked in [extract_constr]. *)

and extract_term env ctx c = 
  let t = Typing.type_of env Evd.empty c in
  extract_term_with_type env ctx c t

and extract_term_with_type env ctx c t =
  let s = Typing.type_of env Evd.empty t in
  (* The only non-informative case: [s] is [Prop] *)
  if is_Prop (whd_betadeltaiota env Evd.empty s) then
    Rprop
  else 
    Rmlterm (extract_term_info_with_type env ctx c t)

(* Variants with a stronger precondition: [c] is informative. 
   We directly return a [ml_ast], not a [term_extraction_result] *)

and extract_term_info env ctx c = 
  let t = Typing.type_of env Evd.empty c in
  extract_term_info_with_type env ctx c t

and extract_term_info_with_type env ctx c t = 
   match kind_of_term c with
     | IsLambda (n, t, d) ->
	 let v = v_of_arity env t in 
	  let env' = push_rel (n,None,t) env in
	  let ctx' = (snd v = NotArity) :: ctx in
	  let d' = extract_term_info env' ctx' d in
	  (* If [d] was of type an arity, [c] too would be so *)
	  (match v with
	     | _,Arity -> d'
	     | l,NotArity -> 
		 let id = if l = Logic then prop_name else id_of_name n in
		 MLlam (id, d'))
      | IsRel n ->
	  (* TODO : magic or not *) 
	  MLrel (renum_db ctx n)
      | IsApp (f,a) ->
  	  let tyf = Typing.type_of env Evd.empty f in
          let s = signature_of_application env f tyf a in  
      	  extract_app env ctx (f,tyf,s) (Array.to_list a) 
      | IsConst (sp,_) ->
	  MLglob (ConstRef sp)
      | IsMutConstruct (cp,_) ->
	  let (s,n) = signature_of_constructor cp in
	  let rec abstract rels i = function
	    | [] -> 
		let rels = List.rev_map (fun x -> MLrel (i-x)) rels in
		if (is_singleton_constructor cp) then 
		  match rels with 
		    | [var]->var
		    | _ -> assert false
		else
		  MLcons (ConstructRef cp, List.length rels, rels)
	    | (Info,NotArity) :: l -> 
		MLlam (id_of_name Anonymous, abstract (i :: rels) (succ i) l)
	    | (Logic,NotArity) :: l ->
		MLlam (id_of_name Anonymous, abstract rels (succ i) l)
	    | (_,Arity) :: l -> 
		abstract rels i l
	  in
	  abstract_n n (abstract [] 1 s)
      | IsMutCase ((ni,(ip,cnames,_,_,_)),p,c,br) ->
	  let extract_branch_aux j b = 	  
	    let (binders,e) = decompose_lam_eta ni.(j) env b in
	    let binders = List.rev binders in
	    let (env',ctx') = push_many_rels_ctx false env ctx binders in
	    (* Some patological cases need an [extract_constr] here 
	       rather than an [extract_term]. See exemples in 
	       [test_extraction.v] *)
	    let e' = match extract_constr env' ctx' e with
	      | Emltype _ -> MLarity
	      | Emlterm a -> a
	    in (binders,e')
	  in
	  let extract_branch j b =
	    let cp = (ip,succ j) in
	    let (s,_) = signature_of_constructor cp in
	    assert (List.length s = ni.(j));
	    (* number of arguments, without parameters *)
	    let (binders, e') = extract_branch_aux j b in
	    let ids = 
	      List.fold_right 
		(fun (v,(n,_)) acc ->
		   if v = default then (id_of_name n :: acc) else acc)
		(List.combine s binders) []
	    in
	    (ConstructRef cp, ids, e')
	  in
	  (* [c] has an inductive type, not an arity type *)
	  (match extract_term env ctx c with
	     | Rmlterm a -> 
		 if (is_singleton_inductive ip) then 
		   begin
		     (* informative singleton case *)
		     assert (Array.length br = 1);
		     let (_,ids,e') = extract_branch 0 br.(0) in
		     assert (List.length ids = 1);
		     MLletin (List.hd ids,a,e')
		   end
		 else
		   MLcase (a, Array.mapi extract_branch br)
	     | Rprop -> (* Logical singleton elimination *)
		 assert (Array.length br = 1);
		 snd (extract_branch_aux 0 br.(0)))
      | IsFix _ | IsCoFix _ as c ->
          let (cofix,i,ti,fi,ci) = dest_fix_cofix c in
	  let n = Array.length ti in
	  let (env', ctx') = fix_environment env ctx fi ti in
	  let extract_fix_body c t =
	    match extract_constr_with_type env' ctx' c (lift n t) with
	      | Emltype _ -> MLarity
	      | Emlterm a -> a
	  in
	  let ei = Array.to_list (array_map2 extract_fix_body ci ti) in
	  MLfix (i, List.map id_of_name fi, ei)
      | IsLetIn (n, c1, t1, c2) ->
	  let id = id_of_name n in
	  let env' = push_rel (n,Some c1,t1) env in
	  let tag = v_of_arity env t1 in
	  (match tag with
	     | (Info, NotArity) -> 
		 let c1' = extract_term_info_with_type env ctx c1 t1 in
		 let c2' = extract_term_info env' (true :: ctx) c2 in
		 (* If [c2] was of type an arity, [c] too would be so *)
		 MLletin (id,c1',c2')
	     | _ ->
		 extract_term_info env' (false :: ctx) c2)
      | IsCast (c, _) ->
	  extract_term_info_with_type env ctx c t
      | IsMutInd _ | IsProd _ | IsSort _ | IsVar _ | IsMeta _ | IsEvar _ ->
	  assert false 
	    
and extract_app env ctx (f,tyf,sf) args =
  let nargs = List.length args in
  assert (List.length sf >= nargs);
  (* We have reduced type of [f] if needed to ensure this property *)
  let mlargs = 
    List.fold_right 
      (fun (v,a) args -> match v with
	 | (_,Arity) -> args
	 | (Logic,NotArity) -> MLprop :: args
	 | (Info,NotArity) ->  
	     (* We can't trust the tag [Vdefault], we use [extract_constr] *)
	     match extract_constr env ctx a with 
	       | Emltype _ -> MLarity :: args
	       | Emlterm mla -> mla :: args)
      (List.combine (list_firstn nargs sf) args)
      []
  in
  (* [f : arity] implies [(f args):arity], that can't be *)
  let f' = extract_term_info_with_type env ctx f tyf in 
  MLapp (f', mlargs)


and signature_of_application env f t a =
  let nargs = Array.length a in	 	
  let t = 
    if nb_prod t >= nargs then 
      t 
    else 
      whd_betadeltaiota env Evd.empty t 
  in
  let nbp = nb_prod t in
  let s = match extract_type env t with
    | Tmltype (_,s,_) -> s	
    | Tarity -> assert false (* Cf. precondition *)
    | Tprop -> assert false
  in 
  if nbp >= nargs then 
    s
  else 
    let f' = mkApp (f, Array.sub a 0 nbp) in 
    let a' = Array.sub a nbp (nargs-nbp) in 
    let t' = Typing.type_of env Evd.empty f' in
    s @ signature_of_application env f' t' a'
	  

(*s Extraction of a constr. *)

and extract_constr_with_type env ctx c t =
    match v_of_arity env t with
      | (Logic, Arity) -> Emltype (Miniml.Tarity, [], [])
      | (Logic, NotArity) -> Emlterm MLprop
      | (Info, Arity) -> 
	  (match extract_type env c with
	     | Tprop -> Emltype (Miniml.Tprop, [], [])
	     | Tarity -> Emltype (Miniml.Tarity, [], [])
	     | Tmltype (t, sign, vl) -> Emltype (t, sign, vl))
      | (Info, NotArity) -> 
	  Emlterm (extract_term_info_with_type env ctx c t)
 	    
and extract_constr env ctx c = 
  extract_constr_with_type env ctx c (Typing.type_of env Evd.empty c)

(*s Extraction of a constant. *)
		
and extract_constant sp =
  try
    Gmap.find sp !constant_table
  with Not_found ->
    let cb = Global.lookup_constant sp in
    let typ = cb.const_type in
    let body = match cb.const_body with 
      | Some c -> c 
      | None -> axiom_message sp
    in
    let env = Global.env() in
    let e = extract_constr_with_type env [] body typ in
    let e = eta_expanse e (extract_type env typ) in
    constant_table := Gmap.add sp e !constant_table;
    e
    
(*s Extraction of an inductive. *)
    
and extract_inductive ((sp,_) as i) =
  extract_mib sp;
  lookup_inductive_extraction i
			     
and extract_constructor (((sp,_),_) as c) =
  extract_mib sp;
  lookup_constructor_extraction c

and is_singleton_inductive (sp,_) = 
  let mib = Global.lookup_mind sp in 
  (mib.mind_ntypes = 1) &&
  let mis = build_mis ((sp,0),[||]) mib in
  (mis_nconstr mis = 1) && 
  match extract_constructor ((sp,0),1) with 
    | Cml ([_],_,_)-> true
    | _ -> false
	  
and is_singleton_constructor ((sp,i),_) = 
  is_singleton_inductive (sp,i) 

and signature_of_constructor cp = match extract_constructor cp with
  | Cprop -> assert false
  | Cml (_,s,n) -> (s,n)

and extract_mib sp =
  if not (Gmap.mem (sp,0) !inductive_extraction_table) then begin
    let mib = Global.lookup_mind sp in
    let genv = Global.env () in
    (* first pass: we store inductive signatures together with 
       an initial type var list. *)
    Array.iteri
      (fun i ib -> 
	 let mis = build_mis ((sp,i),[||]) mib in 
	 if (mis_sort mis) = (Prop Null) then 
	   add_inductive_extraction (sp,i) Iprop
	 else
	   add_inductive_extraction (sp,i) 
	     (Iml (signature_of_arity genv ib.mind_nf_arity, 
		   vl_of_arity genv [] ib.mind_nf_arity)))
      mib.mind_packets;
    (* second pass: we extract constructors arities and we accumulate
       type variables. *)
    let mis = build_mis ((sp,0),[||]) mib in
    let nparams = mis_nparams mis in 
    let params = mis_params_ctxt mis in 
    let env =  Environ.push_rels params genv in
    let params = List.rev_map (fun (n,s,t)->(n,t)) params in 
    let nparams' = nb_params_to_keep genv params in
    let vlparams = vl_of_binders genv [] params in 
    let vl = 
      array_fold_left_i 
	(fun i vl packet -> 
	   let ip = (sp,i) in
	   let mis = build_mis (ip,[||]) mib in
	   if mis_sort mis = Prop Null then begin
	     for j = 0 to mis_nconstr mis do
		 add_constructor_extraction (ip,succ j) Cprop
	     done;
	     vl
	   end else begin
	     array_fold_left_i
	       (fun j vl _ -> 
		  let t = mis_constructor_type (succ j) mis in
		  let t = snd (decompose_prod_n nparams t) in
		  match extract_type_rec_info env vl t [] with
		    | Tarity | Tprop -> assert false
		    | Tmltype (mlt, s, v) -> 
			let l = list_of_ml_arrows mlt in
			let cp = (ip,succ j) in
			  add_constructor_extraction cp (Cml (l,s,nparams'));
			v)
	       vl packet.mind_nf_lc
	   end) 
	vlparams mib.mind_packets
    in
    (* third pass: we update the type variables list in every tables *)
    for i = 0 to mib.mind_ntypes-1 do 
      match lookup_inductive_extraction (sp,i) with 
	| Iprop -> ()
	| Iml (s,_) -> begin 
	    add_inductive_extraction (sp,i) (Iml (s,vl));
	    let ip = (sp,i) in 
	    let mis = build_mis (ip,[||]) mib in 
	    for j = 1 to mis_nconstr mis do
	      let cp = (ip,j) in 
	      match lookup_constructor_extraction cp  with 
		| Cprop -> assert false
		| Cml (t,s,n) -> 
		    let vl = List.rev_map (fun i -> Tvar i) vl in
		    let t' = List.map (update_args sp vl) t in 
		    add_constructor_extraction cp (Cml (t',s, n))
	    done
	  end
    done
  end	      

and extract_inductive_declaration sp =
  extract_mib sp;
  let ip = (sp,0) in 
  if (is_singleton_inductive ip) then
    let t = match lookup_constructor_extraction (ip,1) with 
	  | Cml ([t],_,_)-> t
	  | _ -> assert false
    in
    let vl = match lookup_inductive_extraction ip with 
      | Iml (_,vl) -> vl
      | _ -> assert false
    in 
    Dabbrev (IndRef ip,vl,t)
  else
    let mib = Global.lookup_mind sp in
    let one_constructor ind j _ = 
      let cp = (ind,succ j) in
      match lookup_constructor_extraction cp with 
	| Cprop -> assert false
	| Cml (t,_,_) -> (ConstructRef cp, t)
    in
    let l = 
      array_fold_left_i
	(fun i acc packet -> 
	   let ip = (sp,i) in
	   match lookup_inductive_extraction ip with
	     | Iprop -> acc
	     | Iml (s,vl) -> 
		 (List.rev vl, 
		  IndRef ip, 
		  Array.to_list 
		    (Array.mapi (one_constructor ip) packet.mind_consnames))
		 :: acc )
	[] mib.mind_packets 
    in
    Dtype (List.rev l)

(*s Extraction of a global reference i.e. a constant or an inductive. *)

let extract_declaration r = match r with
  | ConstRef sp -> 
      (match extract_constant sp with
	 | Emltype (mlt, s, vl) -> Dabbrev (r, List.rev vl, mlt)
	 | Emlterm t -> Dglob (r, t))
  | IndRef (sp,_) -> extract_inductive_declaration sp
  | ConstructRef ((sp,_),_) -> extract_inductive_declaration sp
  | VarRef _ -> assert false