aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/extraction/extraction.ml
blob: 9c117782865b032e7ba7c1f8352bce7082d8cf21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

(*i $Id$ i*)

open Pp
open Util
open Names
open Term
open Declarations
open Environ
open Reduction
open Inductive
open Instantiate
open Miniml
open Mlimport

(*s Extraction results. *)

(* The [signature] type is used to know how many arguments a CIC
   object expects, and what these arguments will become in the ML
   object. *)
   
(* The flag [type_var] gives us information about an identifier
   coming from a Lambda or a Product:
   \begin{itemize}
   \item [Varity] denotes identifiers of type an arity of sort $Set$
     or $Type$, that is $(x_1:X_1)\ldots(x_n:X_n)s$ with $s = Set$ or $Type$ 
   \item [Vprop] denotes identifiers of type an arity of sort $Prop$, 
     or of type of type $Prop$ 
   \item [Vdefault] represents the other cases 
   \end{itemize} *)

(* Beware: we use signatures as stacks where the top element
   (i.e. the first one) corresponds to the last abstraction encountered 
   (i.e de Bruijn index 1) *) 

type type_var = Varity | Vprop | Vdefault

type signature = (type_var * identifier) list

(* The [type_extraction_result] is the result of the [extract_type] function
   that extracts a CIC object into an ML type. It is either: 
   \begin{itemize}
   \item a real ML type, followed by its signature and its list of dummy fresh 
     type variables (called flexible variables)
   \item a CIC arity, without counterpart in ML
   \item a non-informative type, which will receive special treatment
   \end{itemize} *)

type type_extraction_result =
  | Tmltype of ml_type * signature * identifier list
  | Tarity
  | Tprop

type context = type_extraction_result list

(* The [extraction_result] is the result of the [extract_constr]
   function that extracts an CIC object. It is either a ML type, a ML
   object or something non-informative. *)

type extraction_result =
  | Emltype of ml_type * signature * identifier list
  | Emlterm of ml_ast
  | Eprop

(*s Utility functions. *)

(* Translation between [Type_extraction_result] and [type_var]. *)

let v_of_t = function
  | Tprop -> Vprop
  | Tarity -> Varity
  | Tmltype _ -> Vdefault

let ml_arrow = function
  | Tmltype (t,_,_), Tmltype (d,_,_) -> Tarr (t,d)
  | _, Tmltype (d,_,_) -> d
  | _ -> assert false

(* FIXME: to be moved somewhere else *)
let array_foldi f a =
  let n = Array.length a in
  let rec fold i v = if i = n then v else fold (succ i) (f i a.(i) v) in
  fold 0

let flexible_name = id_of_string "flex"

let id_of_name = function
  | Anonymous -> id_of_string "_"
  | Name id   -> id

(* This function [params_of_sign] extracts the type parameters ('a in Caml)
   from a signature. *)

let params_of_sign = 
  List.fold_left (fun l v -> match v with Varity,id -> id :: l | _ -> l) []

(* [get_arity c] returns [Some s] if [c] is an arity of sort [s], 
   and [None] otherwise. *)
(* FIXME: to be moved ? *)
let rec get_arity env c =
  match kind_of_term (whd_betadeltaiota env Evd.empty c) with
    | IsProd (x,t,c0) -> get_arity (push_rel_assum (x,t) env) c0
    | IsCast (t,_) -> get_arity env t
    | IsSort s -> Some s
    | _ -> None

(* The next function transforms an arity into a signature. It is used 
   for example with the types of inductive definitions, which are known
   to be already in arity form. *)

let signature_of_arity = 
  let rec sign_of acc env c = match kind_of_term c with
    | IsProd (n, t, c') ->
	let env' = push_rel (n,None,t) env in
	let id = id_of_name n in
	sign_of 
	  (((match get_arity env t with
	       | Some (Prop Null) -> Vprop
	       | Some _ -> Varity 
	       | _ -> Vdefault), id) :: acc)
	  env' c'
    | IsSort _ -> 
	acc
    | _ ->
	assert false
  in
  sign_of []

(* [list_of_ml_arrows] applied to the ML type [a->b->]\dots[z->t]
   returns the list [[a;b;...;z]]. It is used when making the ML types
   of inductive definitions. *)

let rec list_of_ml_arrows = function
  | Tarr (a, b) -> a :: list_of_ml_arrows b
  | t -> []

(* [renum_db] gives the new de Bruijn indices for variables in an ML term.
   This translation is made according to a signature: only variables tagged
   [Vdefault] are keeped *)
	
let renum_db ctx n = 
  let rec renum = function
    | (1, (Tmltype _,_)::_) -> 1
    | (n, (Tmltype _,_)::s) -> succ (renum (pred n, s))
    | (n,             _::s) -> renum (pred n, s)
    | _ -> assert false
  in
  renum (n, ctx)

(*s Tables to keep the extraction of inductive types and constructors. *)

type inductive_extraction_result = signature * identifier list

let inductive_extraction_table = 
  ref (Gmap.empty : (inductive_path, inductive_extraction_result) Gmap.t)

let add_inductive_extraction i e = 
  inductive_extraction_table := Gmap.add i e !inductive_extraction_table

let lookup_inductive_extraction i = Gmap.find i !inductive_extraction_table

type constructor_extraction_result = ml_type list * signature

let constructor_extraction_table = 
  ref (Gmap.empty : (constructor_path, constructor_extraction_result) Gmap.t)

let add_constructor_extraction c e = 
  constructor_extraction_table := Gmap.add c e !constructor_extraction_table

let lookup_constructor_extraction i = Gmap.find i !constructor_extraction_table

(*s Extraction of a type. *)

(* When calling [extract_type] we suppose that the type of [c] is an
   arity. This is normaly checked in [extract_constr]. The context
   [ctx] is the extracted version of [env]. *)

let rec extract_type env ctx c =
  let genv = Global.env() in
  let rec extract_rec env ctx fl c args = 
    let ty = Typing.type_of env Evd.empty c in
    if is_Prop (whd_betadeltaiota env Evd.empty ty) then
      Tprop
    else
      match kind_of_term (whd_betaiota c) with
	| IsProd (n, t, d) ->
	    assert (args = []);
	    let id = id_of_name n in (* FIXME: capture problem *)
	    let env' = push_rel (n,None,t) env in
	    let t' = extract_rec env ctx fl t [] in
	    let ctx' = (t',id) :: ctx in
	    let d' = match t' with
	      | Tarity | Tprop -> extract_rec env' ctx' fl d []
	      | Tmltype (_, _, fl') -> extract_rec env' ctx' fl' d []
	    in
	    (match d' with
	       | Tmltype (_, sign, fl'') -> 
		   Tmltype (ml_arrow (t',d'), (v_of_t t',id)::sign, fl'')
	       | et -> et)
	| IsLambda (n, t, d) ->
	    assert (args = []);
	    let id = id_of_name n in (* FIXME: capture problem *)
	    let env' = push_rel (n,None,t) env in
	    let t' = extract_rec env ctx fl t [] in
	    let ctx' = (t',id) :: ctx in
	    let d' = match t' with
	      | Tarity | Tprop -> extract_rec env' ctx' fl d []
	      | Tmltype (_, _, fl') -> extract_rec env' ctx' fl' d []
	    in
	    (match d' with
	       | Tmltype (ed, sign, fl'') ->
		   Tmltype (ed, (v_of_t t',id)::sign, fl'')
	       | et -> et)
	| IsSort (Prop Null) ->
	    assert (args = []);
	    Tprop
	| IsSort _ ->
	    assert (args = []);
	    Tarity
	| IsApp (d, args') ->
	    extract_rec env ctx fl d (Array.to_list args' @ args)
	| IsRel n ->
	    (match List.nth ctx (pred n) with
	       | (Tprop | Tmltype _), _ -> assert false
	       | Tarity, id -> Tmltype (Tvar id, [], fl))
	| IsConst (sp,a) ->
	    let cty = constant_type genv Evd.empty (sp,a) in
	    if is_arity env Evd.empty cty then
	      (match extract_constant sp with
		 | Emltype (_, sc, flc) -> 
		     extract_type_app env ctx fl (ConstRef sp,sc,flc) args
		 | Eprop -> Tprop
		 | Emlterm _ -> assert false)
	    else
	      let cvalue = constant_value env (sp,a) in
	      extract_rec env ctx fl (mkApp (cvalue, Array.of_list args)) []
	| IsMutInd (spi,_) ->
	    let (si,fli) = extract_inductive spi in
	    extract_type_app env ctx fl (IndRef spi,si,fli) args
	| IsMutCase _ 
	| IsFix _ ->
	    let id = next_ident_away flexible_name fl in
	    Tmltype (Tvar id, [], id :: fl)
	| IsCast (c, _) ->
	    extract_rec env ctx fl c args
	| _ -> 
	    assert false

  and extract_type_app env ctx fl (r,sc,flc) args =
    let nargs = List.length args in
    assert (List.length sc >= nargs);
    let (sign_args,sign_rest) = list_chop nargs sc in
    let (mlargs,fl') = 
      List.fold_right 
	(fun (v,a) ((args,fl) as acc) -> match v with
	   | (Vdefault | Vprop), _ -> acc
	   | Varity,_ -> match extract_rec env ctx fl a [] with
	       | Tarity -> assert false
	       | Tprop -> (Miniml.Tprop :: args, fl)
	       | Tmltype (mla,_,fl') -> (mla :: args, fl'))
	(List.combine sign_args args) 
	([],fl)
    in
    let flc = List.map (fun i -> Tvar i) flc in
    Tmltype (Tapp ((Tglob r) :: mlargs @ flc), sign_rest, fl')

  in
  extract_rec env ctx [] c []


(*s Extraction of a term. *)

and extract_term c =
  let rec extract_rec env ctx c = 
    match kind_of_term c with
      | IsLambda (n, t, d) ->
	  let id = id_of_name n in
	  let env' = push_rel (n,None,t) env in
	  let t' = extract_type env ctx t in
	  let ctx' = (t',id) :: ctx in
	  (match t' with
	     | Tmltype _ -> 
		 (match extract_rec env' ctx' d with
		    | Emlterm a -> Emlterm (MLlam (id, a))
		    | Eprop -> Eprop
		    | Emltype _ -> assert false)
	     | Tarity | Tprop as et -> 
		 extract_rec env' ctx' d)
      | IsRel n ->
	  (match List.nth ctx (pred n) with
	     | Tarity,_ -> assert false
	     | Tprop,_ -> Eprop
	     | Tmltype _, _ -> Emlterm (MLrel (renum_db ctx n)))
      | IsApp (f,a) ->
	  let tyf = Typing.type_of env Evd.empty f in
	  let tyf = 
	    if nb_prod tyf >= Array.length a then 
	      tyf 
	    else 
	      whd_betadeltaiota env Evd.empty tyf 
	  in
	  (match extract_type env ctx tyf with
	     | Tmltype (_,s,_) -> extract_app env ctx (f,s) (Array.to_list a) 
	     | Tarity -> assert false
	     | Tprop -> Eprop)
      | IsConst (sp,_) ->
	  Emlterm (MLglob (ConstRef sp))
      | IsMutConstruct (cp,_) ->
	  Emlterm (MLglob (ConstructRef cp))
      | IsMutCase _ ->
	  failwith "todo"
      | IsFix _ ->
	  failwith "todo"
      | IsLetIn (n, c1, t1, c2) ->
	  failwith "todo"
(*	  (match get_arity env t1 with
	     | Some (Prop Null) -> *)
      | IsCast (c, _) ->
	  extract_rec env ctx c
      | IsMutInd _ | IsProd _ | IsSort _ | IsVar _ 
      | IsMeta _ | IsEvar _ | IsCoFix _ ->
	  assert false 

  and extract_app env ctx (f,sf) args =
    let nargs = List.length args in
    assert (List.length sf >= nargs);
    let mlargs = 
      List.fold_right 
	(fun (v,a) args -> match v with
	   | (Varity | Vprop), _ -> args
	   | Vdefault,_ -> match extract_rec env ctx a with
	       | Emltype _ -> assert false
	       | Eprop -> MLprop :: args
	       | Emlterm mla -> mla :: args)
	(List.combine (list_firstn nargs sf) args)
	[]
    in
    match extract_rec env ctx f with
      | Emlterm f' -> Emlterm (MLapp (f', mlargs))
      | Emltype _ | Eprop -> assert false (* FIXME: to check *)

  in
  extract_rec (Global.env()) [] c

(*s Extraction of a constr. *)

and extract_constr_with_type c t =
  let genv = Global.env () in
  match get_arity genv t with
    | Some (Prop Null) -> 
	Eprop
    | Some _ -> 
	(match extract_type genv [] c with
	   | Tprop -> Eprop
	   | Tarity -> error "not an ML type"
	   | Tmltype (t, sign, fl) -> Emltype (t, sign, fl))
    | None -> 
	extract_term c

and extract_constr c = 
  extract_constr_with_type c (Typing.type_of (Global.env()) Evd.empty c)

(*s Extraction of a constant. *)
		
and extract_constant sp =
  let cb = Global.lookup_constant sp in
  let typ = cb.const_type in
  let body = match cb.const_body with Some c -> c | None -> assert false in
  extract_constr_with_type body typ
    
(*s Extraction of an inductive. *)
    
and extract_inductive ((sp,_) as i) =
  extract_mib sp;
  lookup_inductive_extraction i
			     
and extract_constructor (((sp,_),_) as c) =
  extract_mib sp;
  lookup_constructor_extraction c

and extract_mib sp =
  if not (Gmap.mem (sp,0) !inductive_extraction_table) then begin
    let mib = Global.lookup_mind sp in
    let genv = Global.env () in
    (* first pass: we store inductive signatures together with empty flex. *)
    Array.iteri
      (fun i ib -> add_inductive_extraction (sp,i) 
	   (signature_of_arity genv ib.mind_nf_arity, []))
      mib.mind_packets;
    (* second pass: we extract constructors arities and we accumulate
       all flexible variables. *)
    let fl = 
      array_foldi
	(fun i ib fl ->
	   let mis = build_mis ((sp,i),[||]) mib in
	   array_foldi
	     (fun j _ fl -> 
		let t = mis_constructor_type (succ j) mis in
		match extract_type genv [] t with
		  | Tarity | Tprop -> assert false
		  | Tmltype (mlt, s, f) -> 
		      let l = list_of_ml_arrows mlt in
		      (*i
			let (l,s) = extract_params mib.mind_nparams (l,s) in
		      i*)
		      add_constructor_extraction ((sp,i),succ j) (l,s);
		      f @ fl)
	     ib.mind_nf_lc fl)
	mib.mind_packets []
    in
    (* third pass: we update the inductive flexible variables. *)
    for i = 0 to mib.mind_ntypes - 1 do
      let (s,_) = lookup_inductive_extraction (sp,i) in
      add_inductive_extraction (sp,i) (s,fl)
    done
  end
    
(*s Extraction of a global reference i.e. a constant or an inductive. *)
    
and extract_inductive_declaration sp =
  extract_mib sp;
  let mib = Global.lookup_mind sp in
  let one_constructor ind j id = 
    let (t,_) = lookup_constructor_extraction (ind,succ j) in (id, t)
  in
  let one_inductive i ip =
    let (s,fl) = lookup_inductive_extraction (sp,i) in
    (params_of_sign s @ fl, ip.mind_typename, 
     Array.to_list (Array.mapi (one_constructor (sp,i)) ip.mind_consnames))
  in
  Dtype (Array.to_list (Array.mapi one_inductive mib.mind_packets))

(*s ML declaration from a reference. *)

let extract_declaration = function
  | ConstRef sp -> 
      let id = basename sp in (* FIXME *)
      (match extract_constant sp with
	 | Emltype (mlt, s, fl) -> Dabbrev (id, params_of_sign s @ fl, mlt)
	 | Emlterm t -> Dglob (id, t)
	 | Eprop -> Dglob (id, MLprop))
  | IndRef (sp,_) -> extract_inductive_declaration sp
  | ConstructRef ((sp,_),_) -> extract_inductive_declaration sp
  | VarRef _ -> assert false

(*s Registration of vernac commands for extraction. *)

module Pp = Ocaml.Make(struct let pp_global = Printer.pr_global end)

open Vernacinterp

let _ = 
  vinterp_add "Extraction"
    (function 
       | [VARG_CONSTR ast] ->
	   (fun () -> 
	      let c = Astterm.interp_constr Evd.empty (Global.env()) ast in
	      match kind_of_term c with
		(* If it is a global reference, then output the declaration *)
		| IsConst (sp,_) -> 
		    mSGNL (Pp.pp_decl (extract_declaration (ConstRef sp)))
		| IsMutInd (ind,_) ->
		    mSGNL (Pp.pp_decl (extract_declaration (IndRef ind)))
		| IsMutConstruct (cs,_) ->
		    mSGNL (Pp.pp_decl (extract_declaration (ConstructRef cs)))
		(* Otherwise, output the ML type or expression *)
		| _ ->
		    match extract_constr c with
		      | Emltype (t,_,_) -> mSGNL (Pp.pp_type t)
		      | Emlterm a -> mSGNL (Pp.pp_ast a)
		      | Eprop -> message "prop")
       | _ -> assert false)