1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
(* Authors: Nicolas Ayache and Jean-Christophe Filliâtre *)
(* Tactics to call decision procedures *)
(* Works in two steps:
- first the Coq context and the current goal are translated in
Polymorphic First-Order Logic (see fol.mli in this directory)
- then the resulting query is passed to the Why tool that translates
it to the syntax of the selected prover (Simplify, CVC Lite, haRVey,
Zenon)
*)
open Util
open Pp
open Term
open Tacmach
open Tactics
open Tacticals
open Fol
open Names
open Nameops
open Termops
open Coqlib
open Hipattern
open Libnames
open Declarations
let debug = ref true
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules
@ [["Coq"; "omega"; "OmegaLemmas"]]
let constant = gen_constant_in_modules "dp" coq_modules
let coq_Z = lazy (constant "Z")
let coq_Zplus = lazy (constant "Zplus")
let coq_Zmult = lazy (constant "Zmult")
let coq_Zopp = lazy (constant "Zopp")
let coq_Zminus = lazy (constant "Zminus")
let coq_Zdiv = lazy (constant "Zdiv")
let coq_Zs = lazy (constant "Zs")
let coq_Zgt = lazy (constant "Zgt")
let coq_Zle = lazy (constant "Zle")
let coq_Zge = lazy (constant "Zge")
let coq_Zlt = lazy (constant "Zlt")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_xH = lazy (constant "xH")
let coq_xI = lazy (constant "xI")
let coq_xO = lazy (constant "xO")
(* not Prop typed expressions *)
exception NotProp
(* not first-order expressions *)
exception NotFO
(* Renaming of Coq globals *)
let global_names = Hashtbl.create 97
let used_names = Hashtbl.create 97
let rename_global r =
try
Hashtbl.find global_names r
with Not_found ->
let rec loop id =
if Hashtbl.mem used_names id then
loop (lift_ident id)
else begin
Hashtbl.add used_names id ();
let s = string_of_id id in
Hashtbl.add global_names r s;
s
end
in
loop (Nametab.id_of_global r)
let foralls =
List.fold_right
(fun (x,t) p -> Forall (x, t, p))
let fresh_var = function
| Anonymous -> rename_global (VarRef (id_of_string "x"))
| Name x -> rename_global (VarRef x)
(* coq_rename_vars env [(x1,t1);...;(xn,tn)] renames the xi outside of
env names, and returns the new variables together with the new
environment *)
let coq_rename_vars env vars =
let avoid = ref (ids_of_named_context (Environ.named_context env)) in
List.fold_right
(fun (na,t) (newvars, newenv) ->
let id = next_name_away na !avoid in
avoid := id :: !avoid;
id :: newvars, Environ.push_named (id, None, t) newenv)
vars ([],env)
(* extract the prenex type quantifications i.e.
type_quantifiers env (A1:Set)...(Ak:Set)t = A1...An, (env+Ai), t *)
let decomp_type_quantifiers env t =
let rec loop vars t = match kind_of_term t with
| Prod (n, a, t) when is_Set a ->
loop ((n,a) :: vars) t
| _ ->
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
List.rev vars, env, t
in
loop [] t
(* same thing with lambda binders (for axiomatize body) *)
let decomp_type_lambdas env t =
let rec loop vars t = match kind_of_term t with
| Lambda (n, a, t) when is_Set a ->
loop ((n,a) :: vars) t
| _ ->
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
List.rev vars, env, t
in
loop [] t
let decompose_arrows =
let rec arrows_rec l c = match kind_of_term c with
| Prod (_,t,c) when not (dependent (mkRel 1) c) -> arrows_rec (t :: l) c
| Cast (c,_,_) -> arrows_rec l c
| _ -> List.rev l, c
in
arrows_rec []
let rec eta_expanse t vars env i =
assert (i >= 0);
if i = 0 then
t, vars, env
else
match kind_of_term (Typing.type_of env Evd.empty t) with
| Prod (n, a, b) when not (dependent (mkRel 1) b) ->
let avoid = ids_of_named_context (Environ.named_context env) in
let id = next_name_away n avoid in
let env' = Environ.push_named (id, None, a) env in
let t' = mkApp (t, [| mkVar id |]) in
eta_expanse t' (id :: vars) env' (pred i)
| _ ->
assert false
let rec skip_k_args k cl = match k, cl with
| 0, _ -> cl
| _, _ :: cl -> skip_k_args (k-1) cl
| _, [] -> raise NotFO
(* Coq global references *)
type global = Gnot_fo | Gfo of Fol.decl
let globals = ref Refmap.empty
let globals_stack = ref []
(* synchronization *)
let () =
Summary.declare_summary "Dp globals"
{ Summary.freeze_function = (fun () -> !globals, !globals_stack);
Summary.unfreeze_function =
(fun (g,s) -> globals := g; globals_stack := s);
Summary.init_function = (fun () -> ());
Summary.survive_module = false;
Summary.survive_section = false }
let add_global r d = globals := Refmap.add r d !globals
let mem_global r = Refmap.mem r !globals
let lookup_global r = match Refmap.find r !globals with
| Gnot_fo -> raise NotFO
| Gfo d -> d
let locals = Hashtbl.create 97
let lookup_local r = match Hashtbl.find locals r with
| Gnot_fo -> raise NotFO
| Gfo d -> d
let iter_all_constructors i f =
let _, oib = Global.lookup_inductive i in
Array.iteri
(fun j tj -> f j (mkConstruct (i, j+1)))
oib.mind_nf_lc
(* injection c [t1,...,tn] adds the injection axiom
forall x1:t1,...,xn:tn,y1:t1,...,yn:tn.
c(x1,...,xn)=c(y1,...,yn) -> x1=y1 /\ ... /\ xn=yn *)
let injection c l =
let i = ref 0 in
let var s = incr i; id_of_string (s ^ string_of_int !i) in
let xl = List.map (fun t -> rename_global (VarRef (var "x")), t) l in
i := 0;
let yl = List.map (fun t -> rename_global (VarRef (var "y")), t) l in
let f =
List.fold_right2
(fun (x,_) (y,_) p -> And (Fatom (Eq (App (x,[]),App (y,[]))), p))
xl yl True
in
let vars = List.map (fun (x,_) -> App(x,[])) in
let f = Imp (Fatom (Eq (App (c, vars xl), App (c, vars yl))), f) in
let foralls = List.fold_right (fun (x,t) p -> Forall (x, t, p)) in
let f = foralls xl (foralls yl f) in
let ax = Axiom ("injection_" ^ c, f) in
globals_stack := ax :: !globals_stack
(* rec_names_for c [|n1;...;nk|] builds the list of constant names for
identifiers n1...nk with the same path as c, if they exist; otherwise
raises Not_found *)
let rec_names_for c =
let mp,dp,_ = Names.repr_con c in
array_map_to_list
(function
| Name id ->
let c' = Names.make_con mp dp (label_of_id id) in
ignore (Global.lookup_constant c');
msgnl (Printer.pr_constr (mkConst c'));
c'
| Anonymous ->
raise Not_found)
(* abstraction tables *)
let term_abstractions = Hashtbl.create 97
let new_abstraction =
let r = ref 0 in fun () -> incr r; "abstraction_" ^ string_of_int !r
(* Arithmetic constants *)
exception NotArithConstant
(* translates a closed Coq term p:positive into a FOL term of type int *)
let rec tr_positive p = match kind_of_term p with
| Term.Construct _ when p = Lazy.force coq_xH ->
Cst 1
| Term.App (f, [|a|]) when f = Lazy.force coq_xI ->
Plus (Mult (Cst 2, tr_positive a), Cst 1)
| Term.App (f, [|a|]) when f = Lazy.force coq_xO ->
Mult (Cst 2, tr_positive a)
| Term.Cast (p, _, _) ->
tr_positive p
| _ ->
raise NotArithConstant
(* translates a closed Coq term t:Z into a FOL term of type int *)
let rec tr_arith_constant t = match kind_of_term t with
| Term.Construct _ when t = Lazy.force coq_Z0 ->
Cst 0
| Term.App (f, [|a|]) when f = Lazy.force coq_Zpos ->
tr_positive a
| Term.App (f, [|a|]) when f = Lazy.force coq_Zneg ->
Moins (Cst 0, tr_positive a)
| Term.Cast (t, _, _) ->
tr_arith_constant t
| _ ->
raise NotArithConstant
(* translate a Coq term t:Set into a FOL type expression;
tv = list of type variables *)
and tr_type tv env t =
let t = Reductionops.nf_betadeltaiota env Evd.empty t in
if t = Lazy.force coq_Z then
Tid ("int", [])
else match kind_of_term t with
| Var x when List.mem x tv ->
Tvar (string_of_id x)
| _ ->
let f, cl = decompose_app t in
begin try
let r = global_of_constr f in
match tr_global env r with
| DeclType (id, k) ->
assert (k = List.length cl); (* since t:Set *)
Tid (id, List.map (tr_type tv env) cl)
| _ ->
raise NotFO
with
| Not_found ->
raise NotFO
| NotFO ->
(* we need to abstract some part of (f cl) *)
(*TODO*)
raise NotFO
end
and make_term_abstraction tv env c =
let ty = Typing.type_of env Evd.empty c in
let id = new_abstraction () in
match tr_decl env id ty with
| DeclFun (id,_,_,_) as d ->
begin try
Hashtbl.find term_abstractions c
with Not_found ->
Hashtbl.add term_abstractions c id;
globals_stack := d :: !globals_stack;
id
end
| _ ->
raise NotFO
(* translate a Coq declaration id:ty in a FOL declaration, that is either
- a type declaration : DeclType (id, n) where n:int is the type arity
- a function declaration : DeclFun (id, tl, t) ; that includes constants
- a predicate declaration : DeclPred (id, tl)
- an axiom : Axiom (id, p)
*)
and tr_decl env id ty =
let tv, env, t = decomp_type_quantifiers env ty in
if is_Set t then
DeclType (id, List.length tv)
else if is_Prop t then
DeclPred (id, List.length tv, [])
else
let s = Typing.type_of env Evd.empty t in
if is_Prop s then
Axiom (id, tr_formula tv [] env t)
else
let l, t = decompose_arrows t in
let l = List.map (tr_type tv env) l in
if is_Prop t then
DeclPred(id, List.length tv, l)
else
let s = Typing.type_of env Evd.empty t in
if is_Set s then
DeclFun(id, List.length tv, l, tr_type tv env t)
else
raise NotFO
(* tr_global(r) = tr_decl(id(r),typeof(r)) + a cache mechanism *)
and tr_global env r = match r with
| VarRef id ->
lookup_local id
| r ->
try
lookup_global r
with Not_found ->
try
let ty = Global.type_of_global r in
let id = rename_global r in
let d = tr_decl env id ty in
(* r can be already declared if it is a constructor *)
if not (mem_global r) then begin
add_global r (Gfo d);
globals_stack := d :: !globals_stack
end;
begin try axiomatize_body env r id d with NotFO -> () end;
d
with NotFO ->
add_global r Gnot_fo;
raise NotFO
and axiomatize_body env r id d = match r with
| VarRef _ ->
assert false
| ConstRef c ->
begin match (Global.lookup_constant c).const_body with
| Some b ->
let b = force b in
let tv, env, b = decomp_type_lambdas env b in
let axioms =
(match d with
| DeclPred (id, _, []) ->
let value = tr_formula tv [] env b in
[id, And (Imp (Fatom (Pred (id, [])), value),
Imp (value, Fatom (Pred (id, []))))]
| DeclFun (id, _, [], _) ->
let value = tr_term tv [] env b in
[id, Fatom (Eq (Fol.App (id, []), value))]
| DeclFun (id, _, l, _) | DeclPred (id, _, l) ->
Format.eprintf "axiomatize_body %S@." id;
let b = match kind_of_term b with
(* a single recursive function *)
| Fix (_, (_,_,[|b|])) ->
subst1 (mkConst c) b
(* mutually recursive functions *)
| Fix ((_,i), (names,_,bodies)) ->
(* we only deal with named functions *)
begin try
let l = rec_names_for c names in
substl (List.rev_map mkConst l) bodies.(i)
with Not_found ->
b
end
| _ ->
b
in
let vars, t = decompose_lam b in
let n = List.length l in
let k = List.length vars in
assert (k <= n);
let vars, env = coq_rename_vars env vars in
let t = substl (List.map mkVar vars) t in
let t, vars, env = eta_expanse t vars env (n-k) in
let vars = List.rev vars in
let bv = vars in
let vars = List.map (fun x -> string_of_id x) vars in
let fol_var x =
Fol.App (x, []) in
let fol_vars = List.map fol_var vars in
let vars = List.combine vars l in
begin match d with
| DeclFun _ ->
begin match kind_of_term t with
| Case (ci, _, e, br) ->
equations_for_case env id vars tv bv ci e br
| _ ->
let p =
Fatom (Eq (App (id, fol_vars),
tr_term tv bv env t))
in
[id, foralls vars p]
end
| DeclPred _ ->
let value = tr_formula tv bv env t in
let p =
And (Imp (Fatom (Pred (id, fol_vars)), value),
Imp (value, Fatom (Pred (id, fol_vars))))
in
[id, foralls vars p]
| _ ->
assert false
end
| DeclType _ ->
raise NotFO
| Axiom _ -> assert false)
in
let axioms = List.map (fun (id,ax) -> Axiom (id, ax)) axioms in
globals_stack := axioms @ !globals_stack
| None ->
() (* Coq axiom *)
end
| IndRef i ->
iter_all_constructors i
(fun _ c ->
let rc = reference_of_constr c in
try
begin match tr_global env rc with
| DeclFun (_, _, [], _) -> ()
| DeclFun (idc, _, al, _) -> injection idc al
| _ -> ()
end
with NotFO ->
())
| _ -> ()
and equations_for_case env id vars tv bv ci e br = match kind_of_term e with
| Var x when List.exists (fun (y, _) -> string_of_id x = y) vars ->
let eqs = ref [] in
iter_all_constructors ci.ci_ind
(fun j cj ->
try
let cjr = reference_of_constr cj in
begin match tr_global env cjr with
| DeclFun (idc, _, l, _) ->
let b = br.(j) in
let rec_vars, b = decompose_lam b in
let rec_vars, env = coq_rename_vars env rec_vars in
let b = substl (List.map mkVar rec_vars) b in
let rec_vars = List.rev rec_vars in
let bv = bv @ rec_vars in
let rec_vars = List.map string_of_id rec_vars in
let fol_var x =
Fol.App (x, []) in
let fol_rec_vars = List.map fol_var rec_vars in
let fol_rec_term = App (idc, fol_rec_vars) in
let rec_vars = List.combine rec_vars l in
let fol_vars = List.map fst vars in
let fol_vars = List.map fol_var fol_vars in
let fol_vars = List.map (fun y -> match y with
| App (id, _) ->
if id = string_of_id x
then fol_rec_term
else y
| _ -> y)
fol_vars in
let vars = vars @ rec_vars in
let rec remove l e = match l with
| [] -> []
| (y, t)::l' -> if y = string_of_id e then l'
else (y, t)::(remove l' e) in
let vars = remove vars x in
let p =
Fatom (Eq (App (id, fol_vars),
tr_term tv bv env b))
in
eqs := (id ^ "_" ^ idc, foralls vars p) :: !eqs
| _ ->
assert false end
with NotFO ->
());
!eqs
| _ ->
raise NotFO
(* assumption: t:T:Set *)
and tr_term tv bv env t = match kind_of_term t with
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zplus ->
Plus (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zminus ->
Moins (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zmult ->
Mult (tr_term tv bv env a, tr_term tv bv env b)
| Term.App (f, [|a;b|]) when f = Lazy.force coq_Zdiv ->
Div (tr_term tv bv env a, tr_term tv bv env b)
| Term.Var id when List.mem id bv ->
App (string_of_id id, [])
| _ ->
try
tr_arith_constant t
with NotArithConstant ->
let f, cl = decompose_app t in
begin try
let r = global_of_constr f in
match tr_global env r with
| DeclFun (s, k, _, _) ->
let cl = skip_k_args k cl in
Fol.App (s, List.map (tr_term tv bv env) cl)
| _ ->
raise NotFO
with
| Not_found ->
raise NotFO
| NotFO -> (* we need to abstract some part of (f cl) *)
let rec abstract app = function
| [] ->
Fol.App (make_term_abstraction tv env app, [])
| x :: l as args ->
begin try
let s = make_term_abstraction tv env app in
Fol.App (s, List.map (tr_term tv bv env) args)
with NotFO ->
abstract (applist (app, [x])) l
end
in
let app,l = match cl with
| x :: l -> applist (f, [x]), l | [] -> raise NotFO
in
abstract app l
end
and quantifiers n a b tv bv env =
let vars, env = coq_rename_vars env [n,a] in
let id = match vars with [x] -> x | _ -> assert false in
let b = subst1 (mkVar id) b in
let t = tr_type tv env a in
let bv = id :: bv in
id, t, bv, env, b
(* assumption: f is of type Prop *)
and tr_formula tv bv env f =
let c, args = decompose_app f in
match kind_of_term c, args with
| Var id, [] ->
Fatom (Pred (rename_global (VarRef id), []))
| _, [t;a;b] when c = build_coq_eq () ->
let ty = Typing.type_of env Evd.empty t in
if is_Set ty then
let _ = tr_type tv env t in
Fatom (Eq (tr_term tv bv env a, tr_term tv bv env b))
else
raise NotFO
| _, [a;b] when c = Lazy.force coq_Zle ->
Fatom (Le (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zlt ->
Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zge ->
Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b))
| _, [a;b] when c = Lazy.force coq_Zgt ->
Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b))
| _, [] when c = build_coq_False () ->
False
| _, [] when c = build_coq_True () ->
True
| _, [a] when c = build_coq_not () ->
Not (tr_formula tv bv env a)
| _, [a;b] when c = build_coq_and () ->
And (tr_formula tv bv env a, tr_formula tv bv env b)
| _, [a;b] when c = build_coq_or () ->
Or (tr_formula tv bv env a, tr_formula tv bv env b)
| Prod (n, a, b), _ ->
if is_imp_term f then
Imp (tr_formula tv bv env a, tr_formula tv bv env b)
else
let id, t, bv, env, b = quantifiers n a b tv bv env in
Forall (string_of_id id, t, tr_formula tv bv env b)
| _, [_; a] when c = build_coq_ex () ->
begin match kind_of_term a with
| Lambda(n, a, b) ->
let id, t, bv, env, b = quantifiers n a b tv bv env in
Exists (string_of_id id, t, tr_formula tv bv env b)
| _ ->
(* unusual case of the shape (ex p) *)
raise NotFO (* TODO: we could eta-expanse *)
end
| _ ->
begin try
let r = global_of_constr c in
match tr_global env r with
| DeclPred (s, k, _) ->
let args = skip_k_args k args in
Fatom (Pred (s, List.map (tr_term tv bv env) args))
| _ ->
raise NotFO
with Not_found ->
raise NotFO
end
let tr_goal gl =
Hashtbl.clear locals;
let tr_one_hyp (id, ty) =
try
let s = rename_global (VarRef id) in
let d = tr_decl (pf_env gl) s ty in
Hashtbl.add locals id (Gfo d);
d
with NotFO ->
Hashtbl.add locals id Gnot_fo;
raise NotFO
in
let hyps =
List.fold_right
(fun h acc -> try tr_one_hyp h :: acc with NotFO -> acc)
(pf_hyps_types gl) []
in
let c = tr_formula [] [] (pf_env gl) (pf_concl gl) in
let hyps = List.rev_append !globals_stack (List.rev hyps) in
hyps, c
type prover = Simplify | CVCLite | Harvey | Zenon
let remove_files = List.iter (fun f -> try Sys.remove f with _ -> ())
let sprintf = Format.sprintf
let call_simplify fwhy =
if Sys.command (sprintf "why --simplify %s" fwhy) <> 0 then
anomaly ("call to why --simplify " ^ fwhy ^ " failed; please report");
let fsx = Filename.chop_suffix fwhy ".why" ^ "_why.sx" in
let cmd =
sprintf "timeout 10 Simplify %s > out 2>&1 && grep -q -w Valid out" fsx
in
let out = Sys.command cmd in
let r = if out = 0 then Valid else if out = 1 then Invalid else Timeout in
if not !debug then remove_files [fwhy; fsx];
r
let call_zenon fwhy =
if Sys.command (sprintf "why --zenon %s" fwhy) <> 0 then
anomaly ("call to why --zenon " ^ fwhy ^ " failed; please report");
let fznn = Filename.chop_suffix fwhy ".why" ^ "_why.znn" in
let cmd =
sprintf "timeout 10 zenon %s > out 2>&1 && grep -q PROOF-FOUND out" fznn
in
let out = Sys.command cmd in
let r =
if out = 0 then Valid
else if out = 1 then Invalid
else if out = 137 then Timeout
else anomaly ("malformed Zenon input file " ^ fznn)
in
if not !debug then remove_files [fwhy; fznn];
r
let call_cvcl fwhy =
if Sys.command (sprintf "why --cvcl %s" fwhy) <> 0 then
anomaly ("call to why --cvcl " ^ fwhy ^ " failed; please report");
let fcvc = Filename.chop_suffix fwhy ".why" ^ "_why.cvc" in
let cmd =
sprintf "timeout 10 cvcl < %s > out 2>&1 && grep -q -w Valid out" fcvc
in
let out = Sys.command cmd in
let r = if out = 0 then Valid else if out = 1 then Invalid else Timeout in
if not !debug then remove_files [fwhy; fcvc];
r
let call_harvey fwhy =
if Sys.command (sprintf "why --harvey %s" fwhy) <> 0 then
anomaly ("call to why --harvey " ^ fwhy ^ " failed; please report");
let frv = Filename.chop_suffix fwhy ".why" ^ "_why.rv" in
let out = Sys.command (sprintf "rvc -e -t %s > /dev/null 2>&1" frv) in
if out <> 0 then anomaly ("call to rvc -e -t " ^ frv ^ " failed");
let f = Filename.chop_suffix frv ".rv" ^ "-0.baf" in
let outf = Filename.temp_file "rv" ".out" in
let out =
Sys.command (sprintf "timeout 10 rv -e\"-T 2000\" %s > %s 2>&1" f outf)
in
let r =
if out <> 0 then
Timeout
else
let cmd =
sprintf "grep \"Proof obligation in\" %s | grep -q \"is valid\"" outf
in
if Sys.command cmd = 0 then Valid else Invalid
in
if not !debug then remove_files [fwhy; frv; outf];
r
let call_prover prover q =
let fwhy = Filename.temp_file "coq_dp" ".why" in
Dp_why.output_file fwhy q;
if !debug then ignore (Sys.command (sprintf "cat %s" fwhy));
match prover with
| Simplify -> call_simplify fwhy
| Zenon -> call_zenon fwhy
| CVCLite -> call_cvcl fwhy
| Harvey -> call_harvey fwhy
let dp prover gl =
let concl_type = pf_type_of gl (pf_concl gl) in
if not (is_Prop concl_type) then error "Conclusion is not a Prop";
try
let q = tr_goal gl in
begin match call_prover prover q with
| Valid -> Tactics.admit_as_an_axiom gl
| Invalid -> error "Invalid"
| DontKnow -> error "Don't know"
| Timeout -> error "Timeout"
end
with NotFO ->
error "Not a first order goal"
let simplify = tclTHEN intros (dp Simplify)
let cvc_lite = tclTHEN intros (dp CVCLite)
let harvey = dp Harvey
let zenon = tclTHEN intros (dp Zenon)
let dp_hint l =
let env = Global.env () in
let one_hint (qid,r) =
if not (mem_global r) then begin
let ty = Global.type_of_global r in
let s = Typing.type_of env Evd.empty ty in
if is_Prop s then
try
let id = rename_global r in
let d = Axiom (id, tr_formula [] [] env ty) in
add_global r (Gfo d);
globals_stack := d :: !globals_stack
with NotFO ->
add_global r Gnot_fo;
msg_warning
(pr_reference qid ++
str " ignored (not a first order proposition)")
else begin
add_global r Gnot_fo;
msg_warning
(pr_reference qid ++ str " ignored (not a proposition)")
end
end
in
List.iter one_hint (List.map (fun qid -> qid, Nametab.global qid) l)
|