1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id$ *)
open Util
open Names
open Libnames
open Term
open Termops
open Environ
open Nametab
open Pmisc
open Ptype
open Past
open Putil
open Penv
open Peffect
open Ptyping
open Prename
(* In this module:
* - we try to insert more annotations to achieve a greater completeness;
* - we recursively propagate annotations inside programs;
* - we normalize boolean expressions.
*
* The propagation schemas are the following:
*
* 1. (f a1 ... an) -> (f a1 ... an) {Qf} if the ai are functional
*
* 2. (if e1 then e2 else e3) {Q} -> (if e1 then e2 {Q} else e3 {Q}) {Q}
*
* 3. (let x = e1 in e2) {Q} -> (let x = e1 in e2 {Q}) {Q}
*)
(* force a post-condition *)
let update_post env top ef c =
let i,o = Peffect.get_repr ef in
let al =
List.fold_left
(fun l id ->
if is_mutable_in_env env id then
if is_write ef id then l else (id,at_id id "")::l
else if is_at id then
let (uid,d) = un_at id in
if is_mutable_in_env env uid & d="" then
(id,at_id uid top)::l
else
l
else
l)
[] (global_vars (Global.env()) c)
in
subst_in_constr al c
let force_post up env top q e =
let (res,ef,p,_) = e.info.kappa in
let q' =
if up then option_map (named_app (update_post env top ef)) q else q
in
let i = { env = e.info.env; kappa = (res,ef,p,q') } in
{ desc = e.desc; pre = e.pre; post = q'; loc = e.loc; info = i }
(* put a post-condition if none is present *)
let post_if_none_up env top q = function
| { post = None } as p -> force_post true env top q p
| p -> p
let post_if_none env q = function
| { post = None } as p -> force_post false env "" q p
| p -> p
(* [annotation_candidate p] determines if p is a candidate for a
* post-condition *)
let annotation_candidate = function
| { desc = If _ | Let _ | LetRef _ ; post = None } -> true
| _ -> false
(* [extract_pre p] erase the pre-condition of p and returns it *)
let extract_pre pr =
let (v,e,p,q) = pr.info.kappa in
{ desc = pr.desc; pre = []; post = pr.post; loc = pr.loc;
info = { env = pr.info.env; kappa = (v,e,[],q) } },
p
(* adds some pre-conditions *)
let add_pre p1 pr =
let (v,e,p,q) = pr.info.kappa in
let p' = p1 @ p in
{ desc = pr.desc; pre = p'; post = pr.post; loc = pr.loc;
info = { env = pr.info.env; kappa = (v,e,p',q) } }
(* change the statement *)
let change_desc p d =
{ desc = d; pre = p.pre; post = p.post; loc = p.loc; info = p.info }
let create_bool_post c =
Some { a_value = c; a_name = Name (bool_name()) }
(* [normalize_boolean b] checks if the boolean expression b (of type bool) is
* annotated, and if it is not the case tries to add the annotation
* (if result then c=true else c=false) if b is an expression c.
*)
let is_bool = function
| TypePure c ->
(match kind_of_term (strip_outer_cast c) with
| Ind op ->
string_of_id (id_of_global (IndRef op)) = "bool"
| _ -> false)
| _ -> false
let normalize_boolean ren env b =
let ((res,v),ef,p,q) = b.info.kappa in
Perror.check_no_effect b.loc ef;
if is_bool v then
match q with
| Some _ ->
(* il y a une annotation : on se contente de lui forcer un nom *)
let q = force_bool_name q in
{ desc = b.desc; pre = b.pre; post = q; loc = b.loc;
info = { env = b.info.env; kappa = ((res,v),ef,p,q) } }
| None -> begin
(* il n'y a pas d'annotation : on cherche à en mettre une *)
match b.desc with
Expression c ->
let c' = Term.applist (constant "annot_bool",[c]) in
let ty = type_of_expression ren env c' in
let (_,q') = Hipattern.match_sigma ty in
let q' = Some { a_value = q'; a_name = Name (bool_name()) } in
{ desc = Expression c';
pre = b.pre; post = q'; loc = b.loc;
info = { env = b.info.env; kappa = ((res, v),ef,p,q') } }
| _ -> b
end
else
Perror.should_be_boolean b.loc
(* [decomp_boolean c] returns the specs R and S of a boolean expression *)
let decomp_boolean = function
| Some { a_value = q } ->
Reductionops.whd_betaiota (Term.applist (q, [constant "true"])),
Reductionops.whd_betaiota (Term.applist (q, [constant "false"]))
| _ -> invalid_arg "Ptyping.decomp_boolean"
(* top point of a program *)
let top_point = function
| PPoint (s,_) as p -> s,p
| p -> let s = label_name() in s,PPoint(s,p)
let top_point_block = function
| (Label s :: _) as b -> s,b
| b -> let s = label_name() in s,(Label s)::b
let abstract_unit q = abstract [result_id,constant "unit"] q
(* [add_decreasing env ren ren' phi r bl] adds the decreasing condition
* phi(ren') r phi(ren)
* to the last assertion of the block [bl], which is created if needed
*)
let add_decreasing env inv (var,r) lab bl =
let ids = now_vars env var in
let al = List.map (fun id -> (id,at_id id lab)) ids in
let var_lab = subst_in_constr al var in
let dec = Term.applist (r, [var;var_lab]) in
let post = match inv with
None -> anonymous dec
| Some i -> { a_value = conj dec i.a_value; a_name = i.a_name }
in
bl @ [ Assert post ]
(* [post_last_statement env top q bl] annotates the last statement of the
* sequence bl with q if necessary *)
let post_last_statement env top q bl =
match List.rev bl with
| Statement e :: rem when annotation_candidate e ->
List.rev ((Statement (post_if_none_up env top q e)) :: rem)
| _ -> bl
(* [propagate_desc] moves the annotations inside the program
* info is the typing information coming from the outside annotations *)
let rec propagate_desc ren info d =
let env = info.env in
let (_,_,p,q) = info.kappa in
match d with
| If (e1,e2,e3) ->
(* propagation number 2 *)
let e1' = normalize_boolean ren env (propagate ren e1) in
if e2.post = None or e3.post = None then
let top = label_name() in
let ren' = push_date ren top in
PPoint (top, If (e1',
propagate ren' (post_if_none_up env top q e2),
propagate ren' (post_if_none_up env top q e3)))
else
If (e1', propagate ren e2, propagate ren e3)
| Aff (x,e) ->
Aff (x, propagate ren e)
| TabAcc (ch,x,e) ->
TabAcc (ch, x, propagate ren e)
| TabAff (ch,x,({desc=Expression c} as e1),e2) ->
let p = Pmonad.make_pre_access ren env x c in
let e1' = add_pre [(anonymous_pre true p)] e1 in
TabAff (false, x, propagate ren e1', propagate ren e2)
| TabAff (ch,x,e1,e2) ->
TabAff (ch, x, propagate ren e1, propagate ren e2)
| Apply (f,l) ->
Apply (propagate ren f, List.map (propagate_arg ren) l)
| SApp (f,l) ->
let l =
List.map (fun e -> normalize_boolean ren env (propagate ren e)) l
in
SApp (f, l)
| Lam (bl,e) ->
Lam (bl, propagate ren e)
| Seq bl ->
let top,bl = top_point_block bl in
let bl = post_last_statement env top q bl in
Seq (propagate_block ren env bl)
| While (b,inv,var,bl) ->
let b = normalize_boolean ren env (propagate ren b) in
let lab,bl = top_point_block bl in
let bl = add_decreasing env inv var lab bl in
While (b,inv,var,propagate_block ren env bl)
| LetRef (x,e1,e2) ->
let top = label_name() in
let ren' = push_date ren top in
PPoint (top, LetRef (x, propagate ren' e1,
propagate ren' (post_if_none_up env top q e2)))
| Let (x,e1,e2) ->
let top = label_name() in
let ren' = push_date ren top in
PPoint (top, Let (x, propagate ren' e1,
propagate ren' (post_if_none_up env top q e2)))
| LetRec (f,bl,v,var,e) ->
LetRec (f, bl, v, var, propagate ren e)
| PPoint (s,d) ->
PPoint (s, propagate_desc ren info d)
| Debug _ | Variable _
| Acc _ | Expression _ as d -> d
(* [propagate] adds new annotations if possible *)
and propagate ren p =
let env = p.info.env in
let p = match p.desc with
| Apply (f,l) ->
let _,(_,so,ok),(_,_,_,qapp) = effect_app ren env f l in
if ok then
let q = option_map (named_app (real_subst_in_constr so)) qapp in
post_if_none env q p
else
p
| _ -> p
in
let d = propagate_desc ren p.info p.desc in
let p = change_desc p d in
match d with
| Aff (x,e) ->
let e1,p1 = extract_pre e in
change_desc (add_pre p1 p) (Aff (x,e1))
| TabAff (check, x, ({ desc = Expression _ } as e1), e2) ->
let e1',p1 = extract_pre e1 in
let e2',p2 = extract_pre e2 in
change_desc (add_pre (p1@p2) p) (TabAff (check,x,e1',e2'))
| While (b,inv,_,_) ->
let _,s = decomp_boolean b.post in
let s = make_before_after s in
let q = match inv with
None -> Some (anonymous s)
| Some i -> Some { a_value = conj i.a_value s; a_name = i.a_name }
in
let q = option_map (named_app abstract_unit) q in
post_if_none env q p
| SApp ([Variable id], [e1;e2])
when id = connective_and or id = connective_or ->
let (_,_,_,q1) = e1.info.kappa
and (_,_,_,q2) = e2.info.kappa in
let (r1,s1) = decomp_boolean q1
and (r2,s2) = decomp_boolean q2 in
let q =
let conn = if id = connective_and then "spec_and" else "spec_or" in
let c = Term.applist (constant conn, [r1; s1; r2; s2]) in
let c = Reduction.whd_betadeltaiota (Global.env()) c in
create_bool_post c
in
let d =
SApp ([Variable id;
Expression (out_post q1);
Expression (out_post q2)],
[e1; e2] )
in
post_if_none env q (change_desc p d)
| SApp ([Variable id], [e1]) when id = connective_not ->
let (_,_,_,q1) = e1.info.kappa in
let (r1,s1) = decomp_boolean q1 in
let q =
let c = Term.applist (constant "spec_not", [r1; s1]) in
let c = Reduction.whd_betadeltaiota (Global.env ()) c in
create_bool_post c
in
let d = SApp ([Variable id; Expression (out_post q1)], [ e1 ]) in
post_if_none env q (change_desc p d)
| _ -> p
and propagate_arg ren = function
| Type _ | Refarg _ as a -> a
| Term e -> Term (propagate ren e)
and propagate_block ren env = function
| [] ->
[]
| (Statement p) :: (Assert q) :: rem when annotation_candidate p ->
(* TODO: plutot p.post = None ? *)
let q' =
let ((id,v),_,_,_) = p.info.kappa in
let tv = Pmonad.trad_ml_type_v ren env v in
named_app (abstract [id,tv]) q
in
let p' = post_if_none env (Some q') p in
(Statement (propagate ren p')) :: (Assert q)
:: (propagate_block ren env rem)
| (Statement p) :: rem ->
(Statement (propagate ren p)) :: (propagate_block ren env rem)
| (Label s as x) :: rem ->
x :: propagate_block (push_date ren s) env rem
| x :: rem ->
x :: propagate_block ren env rem
|