1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id$ *)
open Util
open Names
open Nameops
open Term
open Termops
open Pattern
open Matching
open Hipattern
open Environ
open Pmisc
open Ptype
open Past
open Penv
open Prename
let is_mutable = function Ref _ | Array _ -> true | _ -> false
let is_pure = function TypePure _ -> true | _ -> false
let named_app f x = { a_name = x.a_name; a_value = (f x.a_value) }
let pre_app f x =
{ p_assert = x.p_assert; p_name = x.p_name; p_value = f x.p_value }
let post_app = named_app
let anonymous x = { a_name = Anonymous; a_value = x }
let anonymous_pre b x = { p_assert = b; p_name = Anonymous; p_value = x }
let force_name f x =
option_app (fun q -> { a_name = Name (f q.a_name); a_value = q.a_value }) x
let force_post_name x = force_name post_name x
let force_bool_name x =
force_name (function Name id -> id | Anonymous -> bool_name()) x
let out_post = function
Some { a_value = x } -> x
| None -> invalid_arg "out_post"
let pre_of_assert b x =
{ p_assert = b; p_name = x.a_name; p_value = x.a_value }
let assert_of_pre x =
{ a_name = x.p_name; a_value = x.p_value }
(* Some generic functions on programs *)
let is_mutable_in_env env id =
(is_in_env env id) & (is_mutable (type_in_env env id))
let now_vars env c =
Util.map_succeed
(function id -> if is_mutable_in_env env id then id else failwith "caught")
(global_vars (Global.env()) c)
let make_before_after c =
let ids = global_vars (Global.env()) c in
let al =
Util.map_succeed
(function id ->
if is_at id then
match un_at id with (uid,"") -> (id,uid) | _ -> failwith "caught"
else failwith "caught")
ids
in
subst_in_constr al c
(* [apply_pre] and [apply_post] instantiate pre- and post- conditions
* according to a given renaming of variables (and a date that means
* `before' in the case of the post-condition).
*)
let make_assoc_list ren env on_prime ids =
List.fold_left
(fun al id ->
if is_mutable_in_env env id then
(id,current_var ren id)::al
else if is_at id then
let uid,d = un_at id in
if is_mutable_in_env env uid then
(match d with
"" -> (id,on_prime ren uid)
| _ -> (id,var_at_date ren d uid))::al
else
al
else
al)
[] ids
let apply_pre ren env c =
let ids = global_vars (Global.env()) c.p_value in
let al = make_assoc_list ren env current_var ids in
{ p_assert = c.p_assert; p_name = c.p_name;
p_value = subst_in_constr al c.p_value }
let apply_assert ren env c =
let ids = global_vars (Global.env()) c.a_value in
let al = make_assoc_list ren env current_var ids in
{ a_name = c.a_name; a_value = subst_in_constr al c.a_value }
let apply_post ren env before c =
let ids = global_vars (Global.env()) c.a_value in
let al =
make_assoc_list ren env (fun r uid -> var_at_date r before uid) ids in
{ a_name = c.a_name; a_value = subst_in_constr al c.a_value }
(* [traverse_binder ren env bl] updates renaming [ren] and environment [env]
* as we cross the binders [bl]
*)
let rec traverse_binders env = function
[] -> env
| (id,BindType v)::rem ->
traverse_binders (add (id,v) env) rem
| (id,BindSet)::rem ->
traverse_binders (add_set id env) rem
| (_,Untyped)::_ ->
invalid_arg "traverse_binders"
let initial_renaming env =
let ids = Penv.fold_all (fun (id,_) l -> id::l) env [] in
update empty_ren "0" ids
(* Substitutions *)
let rec type_c_subst s ((id,t),e,p,q) =
let s' = s @ List.map (fun (x,x') -> (at_id x "", at_id x' "")) s in
(id, type_v_subst s t), Peffect.subst s e,
List.map (pre_app (subst_in_constr s)) p,
option_app (post_app (subst_in_constr s')) q
and type_v_subst s = function
Ref v -> Ref (type_v_subst s v)
| Array (n,v) -> Array (n,type_v_subst s v)
| Arrow (bl,c) -> Arrow(List.map (binder_subst s) bl, type_c_subst s c)
| (TypePure _) as v -> v
and binder_subst s = function
(n, BindType v) -> (n, BindType (type_v_subst s v))
| b -> b
(* substitution of constr by others *)
let rec type_c_rsubst s ((id,t),e,p,q) =
(id, type_v_rsubst s t), e,
List.map (pre_app (real_subst_in_constr s)) p,
option_app (post_app (real_subst_in_constr s)) q
and type_v_rsubst s = function
Ref v -> Ref (type_v_rsubst s v)
| Array (n,v) -> Array (real_subst_in_constr s n,type_v_rsubst s v)
| Arrow (bl,c) -> Arrow(List.map (binder_rsubst s) bl, type_c_rsubst s c)
| TypePure c -> TypePure (real_subst_in_constr s c)
and binder_rsubst s = function
| (n, BindType v) -> (n, BindType (type_v_rsubst s v))
| b -> b
(* make_arrow bl c = (x1:V1)...(xn:Vn)c *)
let make_arrow bl c = match bl with
| [] -> invalid_arg "make_arrow: no binder"
| _ -> Arrow (bl,c)
(* misc. functions *)
let deref_type = function
| Ref v -> v
| _ -> invalid_arg "deref_type"
let dearray_type = function
| Array (size,v) -> size,v
| _ -> invalid_arg "dearray_type"
let constant_unit () = TypePure (constant "unit")
let id_from_name = function Name id -> id | Anonymous -> (id_of_string "X")
(* v_of_constr : traduit un type CCI en un type ML *)
(* TODO: faire un test plus serieux sur le type des objets Coq *)
let rec is_pure_cci c = match kind_of_term c with
| Cast (c,_) -> is_pure_cci c
| Prod(_,_,c') -> is_pure_cci c'
| Rel _ | Ind _ | Const _ -> true (* heu... *)
| App _ -> not (is_matching_sigma c)
| _ -> Util.error "CCI term not acceptable in programs"
let rec v_of_constr c = match kind_of_term c with
| Cast (c,_) -> v_of_constr c
| Prod _ ->
let revbl,t2 = Term.decompose_prod c in
let bl =
List.map
(fun (name,t1) -> (id_from_name name, BindType (v_of_constr t1)))
(List.rev revbl)
in
let vars = List.rev (List.map (fun (id,_) -> mkVar id) bl) in
Arrow (bl, c_of_constr (substl vars t2))
| Ind _ | Const _ | App _ ->
TypePure c
| _ ->
failwith "v_of_constr: TODO"
and c_of_constr c =
if is_matching_sigma c then
let (a,q) = match_sigma c in
(result_id, v_of_constr a), Peffect.bottom, [], Some (anonymous q)
else
(result_id, v_of_constr c), Peffect.bottom, [], None
(* pretty printers (for debugging purposes) *)
open Pp
open Util
let prterm x = Printer.prterm_env (Global.env()) x
let pp_pre = function
[] -> (mt ())
| l ->
hov 0 (str"pre " ++
prlist_with_sep (fun () -> (spc ()))
(fun x -> prterm x.p_value) l)
let pp_post = function
None -> (mt ())
| Some c -> hov 0 (str"post " ++ prterm c.a_value)
let rec pp_type_v = function
Ref v -> hov 0 (pp_type_v v ++ spc () ++ str"ref")
| Array (cc,v) -> hov 0 (str"array " ++ prterm cc ++ str" of " ++ pp_type_v v)
| Arrow (b,c) ->
hov 0 (prlist_with_sep (fun () -> (mt ())) pp_binder b ++
pp_type_c c)
| TypePure c -> prterm c
and pp_type_c ((id,v),e,p,q) =
hov 0 (str"returns " ++ pr_id id ++ str":" ++ pp_type_v v ++ spc () ++
Peffect.pp e ++ spc () ++ pp_pre p ++ spc () ++ pp_post q ++
spc () ++ str"end")
and pp_binder = function
id,BindType v -> (str"(" ++ pr_id id ++ str":" ++ pp_type_v v ++ str")")
| id,BindSet -> (str"(" ++ pr_id id ++ str":Set)")
| id,Untyped -> (str"(" ++ pr_id id ++ str")")
(* pretty-print of cc-terms (intermediate terms) *)
let rec pp_cc_term = function
CC_var id -> pr_id id
| CC_letin (_,_,bl,c,c1) ->
hov 0 (hov 2 (str"let " ++
prlist_with_sep (fun () -> (str","))
(fun (id,_) -> pr_id id) bl ++
str" =" ++ spc () ++
pp_cc_term c ++
str " in") ++
fnl () ++
pp_cc_term c1)
| CC_lam (bl,c) ->
hov 2 (prlist (fun (id,_) -> (str"[" ++ pr_id id ++ str"]")) bl ++
cut () ++
pp_cc_term c)
| CC_app (f,args) ->
hov 2 (str"(" ++
pp_cc_term f ++ spc () ++
prlist_with_sep (fun () -> (spc ())) pp_cc_term args ++
str")")
| CC_tuple (_,_,cl) ->
hov 2 (str"(" ++
prlist_with_sep (fun () -> (str"," ++ cut ()))
pp_cc_term cl ++
str")")
| CC_case (_,b,[e1;e2]) ->
hov 0 (str"if " ++ pp_cc_term b ++ str" then" ++ fnl () ++
str" " ++ hov 0 (pp_cc_term e1) ++ fnl () ++
str"else" ++ fnl () ++
str" " ++ hov 0 (pp_cc_term e2))
| CC_case _ ->
hov 0 (str"<Case: not yet implemented>")
| CC_expr c ->
hov 0 (prterm c)
| CC_hole c ->
(str"(?::" ++ prterm c ++ str")")
|