1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id$ *)
Require Export Compare_dec.
Require Export Peano_dec.
Require ZArith.
Require Sumbool.
(* Programs use the booleans of type "bool", so we tranform any decidability
* proof, in type sumbool, into a function returning a boolean with the
* correct specification, through the following function:
*)
Definition bool_of_sumbool :
(A,B:Prop) {A}+{B} -> { b:bool | if b then A else B }.
Proof.
Intros A B H.
Elim H; [ Intro; Exists true; Assumption
| Intro; Exists false; Assumption ].
Save.
Definition annot_bool :
(b:bool) { b':bool | if b' then b=true else b=false }.
Proof.
Intro b.
Exists b. Case b; Trivial.
Save.
(* Logical connectives *)
Definition spec_and := [A,B,C,D:Prop][b:bool]if b then A /\ C else B \/ D.
Definition prog_bool_and :
(Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
-> { b:bool | if b then (Q1 true) /\ (Q2 true)
else (Q1 false) \/ (Q2 false) }.
Proof.
Intros Q1 Q2 H1 H2.
Elim H1. Intro b1. Elim H2. Intro b2.
Case b1; Case b2; Intros.
Exists true; Auto.
Exists false; Auto. Exists false; Auto. Exists false; Auto.
Save.
Definition spec_or := [A,B,C,D:Prop][b:bool]if b then A \/ C else B /\ D.
Definition prog_bool_or :
(Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
-> { b:bool | if b then (Q1 true) \/ (Q2 true)
else (Q1 false) /\ (Q2 false) }.
Proof.
Intros Q1 Q2 H1 H2.
Elim H1. Intro b1. Elim H2. Intro b2.
Case b1; Case b2; Intros.
Exists true; Auto. Exists true; Auto. Exists true; Auto.
Exists false; Auto.
Save.
Definition spec_not:= [A,B:Prop][b:bool]if b then B else A.
Definition prog_bool_not :
(Q:bool->Prop) (sig bool Q)
-> { b:bool | if b then (Q false) else (Q true) }.
Proof.
Intros Q H.
Elim H. Intro b.
Case b; Intro.
Exists false; Auto. Exists true; Auto.
Save.
(* Application: the decidability of equality and order relations over
* type Z give some boolean functions with the adequate specification.
* For instance, Z_lt_ge_bool has type:
*
* (x,y:Z){b:bool | if b then `x < y` else `x >= y`}
*)
Definition Z_lt_ge_bool := [x,y:Z](bool_of_sumbool ? ? (Z_lt_ge_dec x y)).
Definition Z_ge_lt_bool := [x,y:Z](bool_of_sumbool ? ? (Z_ge_lt_dec x y)).
Definition Z_le_gt_bool := [x,y:Z](bool_of_sumbool ? ? (Z_le_gt_dec x y)).
Definition Z_gt_le_bool := [x,y:Z](bool_of_sumbool ? ? (Z_gt_le_dec x y)).
Definition Z_eq_bool := [x,y:Z](bool_of_sumbool ? ? (Z_eq_dec x y)).
Definition Z_noteq_bool := [x,y:Z](bool_of_sumbool ? ? (Z_noteq_dec x y)).
Definition Zeven_odd_bool := [x:Z](bool_of_sumbool ? ? (Zeven_odd_dec x)).
(* ... and similarly for type nat *)
Definition notzerop := [n:nat] (sumbool_not ? ? (zerop n)).
Definition lt_ge_dec : (x,y:nat){(lt x y)}+{(ge x y)} :=
[n,m:nat] (sumbool_not ? ? (le_lt_dec m n)).
Definition nat_lt_ge_bool :=
[x,y:nat](bool_of_sumbool ? ? (lt_ge_dec x y)).
Definition nat_ge_lt_bool :=
[x,y:nat](bool_of_sumbool ? ? (sumbool_not ? ? (lt_ge_dec x y))).
Definition nat_le_gt_bool :=
[x,y:nat](bool_of_sumbool ? ? (le_gt_dec x y)).
Definition nat_gt_le_bool :=
[x,y:nat](bool_of_sumbool ? ? (sumbool_not ? ? (le_gt_dec x y))).
Definition nat_eq_bool :=
[x,y:nat](bool_of_sumbool ? ? (eq_nat_dec x y)).
Definition nat_noteq_bool :=
[x,y:nat](bool_of_sumbool ? ? (sumbool_not ? ? (eq_nat_dec x y))).
Definition zerop_bool := [x:nat](bool_of_sumbool ? ? (zerop x)).
Definition notzerop_bool := [x:nat](bool_of_sumbool ? ? (notzerop x)).
|