aboutsummaryrefslogtreecommitdiffhomepage
path: root/contrib/cc/ccalgo.mli
blob: 34bdb5f0498012f211525fc156cd6b24511f374a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

open Util
open Term
open Names

type cinfo =
    {ci_constr: constructor; (* inductive type *)
     ci_arity: int;     (* # args *)
     ci_nhyps: int}     (* # projectable args *)

type term =
    Symb of constr
  | Eps
  | Appli of term*term
  | Constructor of cinfo (* constructor arity + nhyps *)

type ccpattern =
    PApp of term * ccpattern list
  | PVar of int 

type pa_constructor =
    { cnode : int;
      arity : int;
      args  : int list}

module PacMap : Map.S with type key = pa_constructor  

type forest

type state 

type rule=
    Congruence
  | Axiom of constr * bool 
  | Injection of int * pa_constructor * int * pa_constructor * int

type from=
    Goal
  | Hyp of constr
  | HeqG of constr
  | HeqnH of constr*constr 

type 'a eq = {lhs:int;rhs:int;rule:'a}

type equality = rule eq

type disequality = from eq

type explanation =
    Discrimination of (int*pa_constructor*int*pa_constructor)
  | Contradiction of disequality
  | Incomplete

val constr_of_term : term -> constr

val debug : (Pp.std_ppcmds -> unit) -> Pp.std_ppcmds -> unit

val forest : state -> forest

val axioms : forest -> (constr, term * term) Hashtbl.t

val epsilons : forest -> pa_constructor list

val empty : int -> state

val add_term : state -> term -> int

val add_equality : state -> constr -> term -> term -> unit

val add_disequality : state -> from -> term -> term -> unit

val add_quant : state -> identifier -> bool -> 
  int * bool * ccpattern * bool * ccpattern -> unit


val tail_pac : pa_constructor -> pa_constructor

val find : forest -> int -> int

val find_pac : forest -> int -> pa_constructor -> int

val term : forest -> int -> term

val get_constructor_info : forest -> int -> cinfo

val subterms : forest -> int -> int * int

val join_path : forest -> int -> int -> 
  ((int * int) * equality) list * ((int * int) * equality) list

type quant_eq=
    {qe_hyp_id: identifier;
     qe_pol: bool;
     qe_nvars:int;
     qe_lhs: ccpattern;
     qe_lhs_valid:bool;
     qe_rhs: ccpattern;
     qe_rhs_valid:bool}


type pa_fun=
    {fsym:int;
     fnargs:int}

type matching_problem
 
module PafMap: Map.S with type key = pa_fun

val make_fun_table : state -> Intset.t PafMap.t 

val do_match :  state ->
    (quant_eq * int array) list ref -> matching_problem Stack.t -> unit

val init_pb_stack : state -> matching_problem Stack.t

val paf_of_patt : (term, int) Hashtbl.t -> ccpattern -> pa_fun

val find_instances : state -> (quant_eq * int array) list

val execute : bool -> state -> explanation option













(*type pa_constructor


module PacMap:Map.S with type key=pa_constructor

type term = 
    Symb of Term.constr 
  | Eps
  | Appli of term * term 
  | Constructor of Names.constructor*int*int

type rule = 
    Congruence 
  | Axiom of Names.identifier
  | Injection of int*int*int*int

type equality =
    {lhs : int; 
     rhs : int; 
     rule : rule}

module ST :
sig
  type t
  val empty : unit -> t
  val enter : int -> int * int -> t -> unit
  val query : int * int -> t -> int
  val delete : int -> t -> unit
  val delete_list : int list -> t -> unit
end
  
module UF :
sig
  type t 
  exception Discriminable of int * int * int * int * t 
  val empty : unit -> t
  val find : t -> int -> int
  val size : t -> int -> int
  val get_constructor : t -> int -> Names.constructor
  val pac_arity : t -> int -> int * int -> int
  val mem_node_pac : t -> int -> int * int -> int 
  val add_pacs : t -> int -> pa_constructor PacMap.t -> 
    int list * equality list
  val term : t -> int -> term    
  val subterms : t -> int -> int * int
  val add : t -> term -> int
  val union : t -> int -> int -> equality -> int list * equality list
  val join_path : t -> int -> int -> 
    ((int*int)*equality) list*
    ((int*int)*equality) list
end
  

val combine_rec : UF.t -> int list -> equality list
val process_rec : UF.t -> equality list -> int list

val cc : UF.t -> unit
  
val make_uf :
  (Names.identifier * (term * term)) list -> UF.t

val add_one_diseq : UF.t -> (term * term) -> int * int

val add_disaxioms : 
  UF.t -> (Names.identifier * (term * term)) list -> 
  (Names.identifier * (int * int)) list
  
val check_equal : UF.t -> int * int -> bool

val find_contradiction : UF.t -> 
  (Names.identifier * (int * int)) list -> 
  (Names.identifier * (int * int))
*)