1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
type 'a tree =
| Leaf of 'a
| Node of 'a * 'a tree * 'a tree
type 'a t = Nil | Cons of int * 'a tree * 'a t
let oob () = invalid_arg "index out of bounds"
let empty = Nil
let cons x l = match l with
| Cons (h1, t1, Cons (h2, t2, rem)) ->
if Int.equal h1 h2 then Cons (1 + h1 + h2, Node (x, t1, t2), rem)
else Cons (1, Leaf x, l)
| _ -> Cons (1, Leaf x, l)
let is_empty = function
| Nil -> true
| _ -> false
let rec tree_get h t i = match t with
| Leaf x ->
if i = 0 then x else oob ()
| Node (x, t1, t2) ->
if i = 0 then x
else
let h = h / 2 in
if i <= h then tree_get h t1 (i - 1) else tree_get h t2 (i - h - 1)
let rec get l i = match l with
| Nil -> oob ()
| Cons (h, t, rem) ->
if i < h then tree_get h t i else get rem (i - h)
let length l =
let rec length accu = function
| Nil -> accu
| Cons (h, _, l) -> length (h + accu) l
in
length 0 l
let rec tree_map f = function
| Leaf x -> Leaf (f x)
| Node (x, t1, t2) -> Node (f x, tree_map f t1, tree_map f t2)
let rec map f = function
| Nil -> Nil
| Cons (h, t, l) -> Cons (h, tree_map f t, map f l)
let rec tree_fold_left f accu = function
| Leaf x -> f accu x
| Node (x, t1, t2) ->
tree_fold_left f (tree_fold_left f (f accu x) t1) t2
let rec fold_left f accu = function
| Nil -> accu
| Cons (_, t, l) -> fold_left f (tree_fold_left f accu t) l
let rec tree_fold_right f t accu = match t with
| Leaf x -> f x accu
| Node (x, t1, t2) ->
f x (tree_fold_right f t1 (tree_fold_right f t2 accu))
let rec fold_right f l accu = match l with
| Nil -> accu
| Cons (_, t, l) -> tree_fold_right f t (fold_right f l accu)
let hd = function
| Nil -> failwith "hd"
| Cons (_, Leaf x, _) -> x
| Cons (_, Node (x, _, _), _) -> x
let tl = function
| Nil -> failwith "tl"
| Cons (_, Leaf _, l) -> l
| Cons (h, Node (_, t1, t2), l) ->
let h = h / 2 in
Cons (h, t1, Cons (h, t2, l))
let rec skipn n l =
if n = 0 then l
else if is_empty l then failwith "List.skipn"
else skipn (pred n) (tl l)
|