1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Generic hash-consing. *)
(** {6 Hashconsing functorial interface} *)
module type HashconsedType =
sig
(** {6 Generic hashconsing signature}
Given an equivalence relation [eq], a hashconsing function is a
function that associates the same canonical element to two elements
related by [eq]. Usually, the element chosen is canonical w.r.t.
physical equality [(==)], so as to reduce memory consumption and
enhance efficiency of equality tests.
In order to ensure canonicality, we need a way to remember the element
associated to a class of equivalence; this is done using the table type
generated by the [Make] functor.
*)
type t
(** Type of objects to hashcons. *)
type u
(** Type of hashcons functions for the sub-structures contained in [t].
Usually a tuple of functions. *)
val hashcons : u -> t -> t
(** The actual hashconsing function, using its fist argument to recursively
hashcons substructures. It should be compatible with [eq], that is
[eq x (hashcons f x) = true]. *)
val eq : t -> t -> bool
(** A comparison function. It is allowed to use physical equality
on the sub-terms hashconsed by the [hashcons] function, but it should be
insensible to shallow copy of the compared object. *)
val hash : t -> int
(** A hash function passed to the underlying hashtable structure. [hash]
should be compatible with [eq], i.e. if [eq x y = true] then
[hash x = hash y]. *)
end
module type S =
sig
type t
(** Type of objects to hashcons. *)
type u
(** Type of hashcons functions for the sub-structures contained in [t]. *)
type table
(** Type of hashconsing tables *)
val generate : u -> table
(** This create a hashtable of the hashconsed objects. *)
val hcons : table -> t -> t
(** Perform the hashconsing of the given object within the table. *)
val stats : table -> Hashset.statistics
(** Recover statistics of the hashconsing table. *)
end
module Make (X : HashconsedType) : (S with type t = X.t and type u = X.u)
(** Create a new hashconsing, given canonicalization functions. *)
(** {6 Wrappers} *)
(** These are intended to be used together with instances of the [Make]
functor. *)
val simple_hcons : ('u -> 'tab) -> ('tab -> 't -> 't) -> 'u -> 't -> 't
(** [simple_hcons f sub obj] creates a new table each time it is applied to any
sub-hash function [sub]. *)
val recursive_hcons : (('t -> 't) * 'u -> 'tab) -> ('tab -> 't -> 't) -> ('u -> 't -> 't)
(** As [simple_hcons] but intended to be used with well-founded data structures. *)
(** {6 Hashconsing of usual structures} *)
module type HashedType = sig type t val hash : t -> int end
module Hstring : (S with type t = string and type u = unit)
(** Hashconsing of strings. *)
module Hlist (D:HashedType) :
(S with type t = D.t list and type u = (D.t list -> D.t list)*(D.t->D.t))
(** Hashconsing of lists. *)
module Hobj : (S with type t = Obj.t and type u = (Obj.t -> Obj.t) * unit)
(** Hashconsing of OCaml values. *)
|