1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Hash consing of datastructures *)
(* The generic hash-consing functions (does not use Obj) *)
(* [t] is the type of object to hash-cons
* [u] is the type of hash-cons functions for the sub-structures
* of objects of type t (u usually has the form (t1->t1)*(t2->t2)*...).
* [hashcons u x] is a function that hash-cons the sub-structures of x using
* the hash-consing functions u provides.
* [eq] is a comparison function. It is allowed to use physical equality
* on the sub-terms hash-consed by the hashcons function.
* [hash] is the hash function given to the Hashtbl.Make function
*
* Note that this module type coerces to the argument of Hashtbl.Make.
*)
module type HashconsedType =
sig
type t
type u
val hashcons : u -> t -> t
val eq : t -> t -> bool
val hash : t -> int
end
(** The output is a function [generate] such that [generate args] creates a
hash-table of the hash-consed objects, together with [hcons], a function
taking a table and an object, and hashcons it. For simplicity of use, we use
the wrapper functions defined below. *)
module type S =
sig
type t
type u
type table
val generate : u -> table
val hcons : table -> t -> t
val stats : table -> Hashset.statistics
end
module Make (X : HashconsedType) : (S with type t = X.t and type u = X.u) =
struct
type t = X.t
type u = X.u
(* We create the type of hashtables for t, with our comparison fun.
* An invariant is that the table never contains two entries equals
* w.r.t (=), although the equality on keys is X.eq. This is
* granted since we hcons the subterms before looking up in the table.
*)
module Htbl = Hashset.Make(X)
type table = (Htbl.t * u)
let generate u =
let tab = Htbl.create 97 in
(tab, u)
let hcons (tab, u) x =
let y = X.hashcons u x in
Htbl.repr (X.hash y) y tab
let stats (tab, _) = Htbl.stats tab
end
(* A few useful wrappers:
* takes as argument the function [generate] above and build a function of type
* u -> t -> t that creates a fresh table each time it is applied to the
* sub-hcons functions. *)
(* For non-recursive types it is quite easy. *)
let simple_hcons h f u =
let table = h u in
fun x -> f table x
(* For a recursive type T, we write the module of sig Comp with u equals
* to (T -> T) * u0
* The first component will be used to hash-cons the recursive subterms
* The second one to hashcons the other sub-structures.
* We just have to take the fixpoint of h
*)
let recursive_hcons h f u =
let loop = ref (fun _ -> assert false) in
let self x = !loop x in
let table = h (self, u) in
let hrec x = f table x in
let () = loop := hrec in
hrec
(* Basic hashcons modules for string and obj. Integers do not need be
hashconsed. *)
module type HashedType = sig type t val hash : t -> int end
(* list *)
module Hlist (D:HashedType) =
Make(
struct
type t = D.t list
type u = (t -> t) * (D.t -> D.t)
let hashcons (hrec,hdata) = function
| x :: l -> hdata x :: hrec l
| l -> l
let eq l1 l2 =
l1 == l2 ||
match l1, l2 with
| [], [] -> true
| x1::l1, x2::l2 -> x1==x2 && l1==l2
| _ -> false
let rec hash accu = function
| [] -> accu
| x :: l ->
let accu = Hashset.Combine.combine (D.hash x) accu in
hash accu l
let hash l = hash 0 l
end)
(* string *)
module Hstring = Make(
struct
type t = string
type u = unit
let hashcons () s =(* incr accesstr;*) s
[@@@ocaml.warning "-3"] (* [@@noalloc] since 4.03.0 GPR#240 *)
external eq : string -> string -> bool = "caml_string_equal" "noalloc"
[@@@ocaml.warning "+3"]
(** Copy from CString *)
let rec hash len s i accu =
if i = len then accu
else
let c = Char.code (String.unsafe_get s i) in
hash len s (succ i) (accu * 19 + c)
let hash s =
let len = String.length s in
hash len s 0 0
end)
(* Obj.t *)
exception NotEq
(* From CAMLLIB/caml/mlvalues.h *)
let no_scan_tag = 251
let tuple_p obj = Obj.is_block obj && (Obj.tag obj < no_scan_tag)
let comp_obj o1 o2 =
if tuple_p o1 && tuple_p o2 then
let n1 = Obj.size o1 and n2 = Obj.size o2 in
if n1=n2 then
try
for i = 0 to pred n1 do
if not (Obj.field o1 i == Obj.field o2 i) then raise NotEq
done; true
with NotEq -> false
else false
else o1=o2
let hash_obj hrec o =
begin
if tuple_p o then
let n = Obj.size o in
for i = 0 to pred n do
Obj.set_field o i (hrec (Obj.field o i))
done
end;
o
module Hobj = Make(
struct
type t = Obj.t
type u = (Obj.t -> Obj.t) * unit
let hashcons (hrec,_) = hash_obj hrec
let eq = comp_obj
let hash = Hashtbl.hash
end)
|