blob: ac66b41fb775c490a1e2398173a993197074fb7b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Arbitrary large integer numbers *)
type bigint
val of_string : string -> bigint
(** May raise a Failure just as [int_of_string] on non-numerical strings *)
val to_string : bigint -> string
val of_int : int -> bigint
val to_int : bigint -> int (** May raise a Failure on oversized numbers *)
val zero : bigint
val one : bigint
val two : bigint
val div2_with_rest : bigint -> bigint * bool (** true=odd; false=even *)
val add_1 : bigint -> bigint
val sub_1 : bigint -> bigint
val mult_2 : bigint -> bigint
val add : bigint -> bigint -> bigint
val sub : bigint -> bigint -> bigint
val mult : bigint -> bigint -> bigint
(** Euclid division m/d = (q,r), with m = q*d+r and |r|<|q|.
This is the "Trunc" variant (a.k.a "Truncated-Toward-Zero"),
as with ocaml's / (but not as ocaml's Big_int.quomod_big_int).
We have sign r = sign m *)
val euclid : bigint -> bigint -> bigint * bigint
val less_than : bigint -> bigint -> bool
val equal : bigint -> bigint -> bool
val is_strictly_pos : bigint -> bool
val is_strictly_neg : bigint -> bool
val is_pos_or_zero : bigint -> bool
val is_neg_or_zero : bigint -> bool
val neg : bigint -> bigint
val pow : bigint -> int -> bigint
|