1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(***************************************************)
(* Basic operations on (unbounded) integer numbers *)
(***************************************************)
(* An integer is canonically represented as an array of k-digits blocs,
i.e. in base 10^k.
0 is represented by the empty array and -1 by the singleton [|-1|].
The first bloc is in the range ]0;base[ for positive numbers.
The first bloc is in the range [-base;-1[ for numbers < -1.
All other blocs are numbers in the range [0;base[.
Negative numbers are represented using 2's complementation :
one unit is "borrowed" from the top block for complementing
the other blocs. For instance, with 4-digits blocs,
[|-5;6789|] denotes -43211
since -5.10^4+6789=-((4.10^4)+(10000-6789)) = -43211
The base is a power of 10 in order to facilitate the parsing and printing
of numbers in digital notation.
All functions, to the exception of to_string and of_string should work
with an arbitrary base, even if not a power of 10.
In practice, we set k=4 on 32-bits machines, so that no overflow in ocaml
machine words (i.e. the interval [-2^30;2^30-1]) occur when multiplying two
numbers less than (10^k). On 64-bits machines, k=9.
*)
(* The main parameters *)
let size =
let rec log10 n = if n < 10 then 0 else 1 + log10 (n / 10) in
(log10 max_int) / 2
let format_size =
(* How to parametrize a printf format *)
if Int.equal size 4 then Printf.sprintf "%04d"
else if Int.equal size 9 then Printf.sprintf "%09d"
else fun n ->
let rec aux j l n =
if Int.equal j size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10)
in String.concat "" (aux 0 [] n)
(* The base is 10^size *)
let base =
let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size
(******************************************************************)
(* First, we represent all numbers by int arrays.
Later, we will optimize the particular case of small integers *)
(******************************************************************)
module ArrayInt = struct
(* Basic numbers *)
let zero = [||]
let is_zero = function
| [||] -> true
| _ -> false
(* An array is canonical when
- it is empty
- it is [|-1|]
- its first bloc is in [-base;-1[U]0;base[
and the other blocs are in [0;base[. *)
(*
let canonical n =
let ok x = (0 <= x && x < base) in
let rec ok_tail k = (Int.equal k 0) || (ok n.(k) && ok_tail (k-1)) in
let ok_init x = (-base <= x && x < base && not (Int.equal x (-1)) && not (Int.equal x 0))
in
(is_zero n) || (match n with [|-1|] -> true | _ -> false) ||
(ok_init n.(0) && ok_tail (Array.length n - 1))
*)
(* [normalize_pos] : removing initial blocks of 0 *)
let normalize_pos n =
let k = ref 0 in
while !k < Array.length n && Int.equal n.(!k) 0 do incr k done;
Array.sub n !k (Array.length n - !k)
(* [normalize_neg] : avoid (-1) as first bloc.
input: an array with -1 as first bloc and other blocs in [0;base[
output: a canonical array *)
let normalize_neg n =
let k = ref 1 in
while !k < Array.length n && Int.equal n.(!k) (base - 1) do incr k done;
let n' = Array.sub n !k (Array.length n - !k) in
if Int.equal (Array.length n') 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n')
(* [normalize] : avoid 0 and (-1) as first bloc.
input: an array with first bloc in [-base;base[ and others in [0;base[
output: a canonical array *)
let normalize n =
if Int.equal (Array.length n) 0 then n
else if Int.equal n.(0) (-1) then normalize_neg n
else if Int.equal n.(0) 0 then normalize_pos n
else n
(* Opposite (expects and returns canonical arrays) *)
let neg m =
if is_zero m then zero else
let n = Array.copy m in
let i = ref (Array.length m - 1) in
while !i > 0 && Int.equal n.(!i) 0 do decr i done;
if Int.equal !i 0 then begin
n.(0) <- - n.(0);
(* n.(0) cannot be 0 since m is canonical *)
if Int.equal n.(0) (-1) then normalize_neg n
else if Int.equal n.(0) base then (n.(0) <- 0; Array.append [| 1 |] n)
else n
end else begin
(* here n.(!i) <> 0, hence 0 < base - n.(!i) < base for n canonical *)
n.(!i) <- base - n.(!i); decr i;
while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done;
(* since -base <= n.(0) <= base-1, hence -base <= -n.(0)-1 <= base-1 *)
n.(0) <- - n.(0) - 1;
(* since m is canonical, m.(0)<>0 hence n.(0)<>-1,
and m=-1 is already handled above, so here m.(0)<>-1 hence n.(0)<>0 *)
n
end
let push_carry r j =
let j = ref j in
while !j > 0 && r.(!j) < 0 do
r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1
done;
while !j > 0 && r.(!j) >= base do
r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1
done;
(* here r.(0) could be in [-2*base;2*base-1] *)
if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r)
else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r)
else normalize r (* in case r.(0) is 0 or -1 *)
let add_to r a j =
if is_zero a then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) + a.(i-j);
if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1)
done;
r.(j) <- r.(j) + a.(0);
push_carry r j
end
let add n m =
let d = Array.length n - Array.length m in
if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d)
let sub_to r a j =
if is_zero a then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) - a.(i-j);
if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1)
done;
r.(j) <- r.(j) - a.(0);
push_carry r j
end
let sub n m =
let d = Array.length n - Array.length m in
if d >= 0 then sub_to (Array.copy n) m d
else let r = neg m in add_to r n (Array.length r - Array.length n)
let mult m n =
if is_zero m || is_zero n then zero else
let l = Array.length m + Array.length n in
let r = Array.make l 0 in
for i = Array.length m - 1 downto 0 do
for j = Array.length n - 1 downto 0 do
let p = m.(i) * n.(j) + r.(i+j+1) in
let (q,s) =
if p < 0
then (p + 1) / base - 1, (p + 1) mod base + base - 1
else p / base, p mod base in
r.(i+j+1) <- s;
if not (Int.equal q 0) then r.(i+j) <- r.(i+j) + q;
done
done;
normalize r
(* Comparisons *)
let is_strictly_neg n = not (is_zero n) && n.(0) < 0
let is_strictly_pos n = not (is_zero n) && n.(0) > 0
let is_neg_or_zero n = is_zero n || n.(0) < 0
let is_pos_or_zero n = is_zero n || n.(0) > 0
(* Is m without its i first blocs less then n without its j first blocs ?
Invariant : |m|-i = |n|-j *)
let rec less_than_same_size m n i j =
i < Array.length m &&
(m.(i) < n.(j) || (Int.equal m.(i) n.(j) && less_than_same_size m n (i+1) (j+1)))
let less_than m n =
if is_strictly_neg m then
is_pos_or_zero n || Array.length m > Array.length n
|| (Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0)
else
is_strictly_pos n && (Array.length m < Array.length n ||
(Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0))
(* For this equality test it is critical that n and m are canonical *)
let rec array_eq len v1 v2 i =
if Int.equal len i then true
else
Int.equal v1.(i) v2.(i) && array_eq len v1 v2 (succ i)
let equal m n =
let lenm = Array.length m in
let lenn = Array.length n in
(Int.equal lenm lenn) && (array_eq lenm m n 0)
(* Is m without its k top blocs less than n ? *)
let less_than_shift_pos k m n =
(Array.length m - k < Array.length n)
|| (Int.equal (Array.length m - k) (Array.length n) && less_than_same_size m n k 0)
let rec can_divide k m d i =
(Int.equal i (Array.length d)) ||
(m.(k+i) > d.(i)) ||
(Int.equal m.(k+i) d.(i) && can_divide k m d (i+1))
(* For two big nums m and d and a small number q,
computes m - d * q * base^(|m|-|d|-k) in-place (in m).
Both m d and q are positive. *)
let sub_mult m d q k =
if not (Int.equal q 0) then
for i = Array.length d - 1 downto 0 do
let v = d.(i) * q in
m.(k+i) <- m.(k+i) - v mod base;
if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1);
if v >= base then begin
m.(k+i-1) <- m.(k+i-1) - v / base;
let j = ref (i-1) in
while m.(k + !j) < 0 do (* result is positive, hence !j remains >= 0 *)
m.(k + !j) <- m.(k + !j) + base; decr j; m.(k + !j) <- m.(k + !j) -1
done
end
done
(** Euclid division m/d = (q,r), with m = q*d+r and |r|<|q|.
This is the "Trunc" variant (a.k.a "Truncated-Toward-Zero"),
as with ocaml's / (but not as ocaml's Big_int.quomod_big_int).
We have sign r = sign m *)
let euclid m d =
let isnegm, m =
if is_strictly_neg m then (-1),neg m else 1,Array.copy m in
let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in
if is_zero d then raise Division_by_zero;
let q,r =
if less_than m d then (zero,m) else
let ql = Array.length m - Array.length d in
let q = Array.make (ql+1) 0 in
let i = ref 0 in
while not (less_than_shift_pos !i m d) do
if Int.equal m.(!i) 0 then incr i else
if can_divide !i m d 0 then begin
let v =
if Array.length d > 1 && not (Int.equal d.(0) m.(!i)) then
(m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1)
else
m.(!i) / d.(0) in
q.(!i) <- q.(!i) + v;
sub_mult m d v !i
end else begin
let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in
q.(!i) <- q.(!i) + v / base;
sub_mult m d (v / base) !i;
q.(!i+1) <- q.(!i+1) + v mod base;
if q.(!i+1) >= base then
(q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1);
sub_mult m d (v mod base) (!i+1)
end
done;
(normalize q, normalize m) in
(if Int.equal (isnegd * isnegm) (-1) then neg q else q),
(if Int.equal isnegm (-1) then neg r else r)
(* Parsing/printing ordinary 10-based numbers *)
let of_string s =
let len = String.length s in
let isneg = len > 1 && s.[0] == '-' in
let d = ref (if isneg then 1 else 0) in
while !d < len && s.[!d] == '0' do incr d done;
if Int.equal !d len then zero else
let r = (len - !d) mod size in
let h = String.sub s (!d) r in
let e = match h with "" -> 0 | _ -> 1 in
let l = (len - !d) / size in
let a = Array.make (l + e) 0 in
if Int.equal e 1 then a.(0) <- int_of_string h;
for i = 1 to l do
a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size)
done;
if isneg then neg a else a
let to_string_pos sgn n =
if Int.equal (Array.length n) 0 then "0" else
sgn ^
String.concat ""
(string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n)))
let to_string n =
if is_strictly_neg n then to_string_pos "-" (neg n)
else to_string_pos "" n
end
(******************************************************************)
(* Optimized operations on (unbounded) integer numbers *)
(* integers smaller than base are represented as machine integers *)
(******************************************************************)
open ArrayInt
type bigint = Obj.t
(* Since base is the largest power of 10 such that base*base <= max_int,
we have max_int < 100*base*base : any int can be represented
by at most three blocs *)
let small n = (-base <= n) && (n < base)
let mkarray n =
(* n isn't small, this case is handled separately below *)
let lo = n mod base
and hi = n / base in
let t = if small hi then [|hi;lo|] else [|hi/base;hi mod base;lo|]
in
for i = Array.length t -1 downto 1 do
if t.(i) < 0 then (t.(i) <- t.(i) + base; t.(i-1) <- t.(i-1) -1)
done;
t
let ints_of_int n =
if Int.equal n 0 then [| |]
else if small n then [| n |]
else mkarray n
let of_int n =
if small n then Obj.repr n else Obj.repr (mkarray n)
let of_ints n =
let n = normalize n in (* TODO: using normalize here seems redundant now *)
if is_zero n then Obj.repr 0 else
if Int.equal (Array.length n) 1 then Obj.repr n.(0) else
Obj.repr n
let coerce_to_int = (Obj.magic : Obj.t -> int)
let coerce_to_ints = (Obj.magic : Obj.t -> int array)
let to_ints n =
if Obj.is_int n then ints_of_int (coerce_to_int n)
else coerce_to_ints n
let int_of_ints =
let maxi = mkarray max_int and mini = mkarray min_int in
fun t ->
let l = Array.length t in
if (l > 3) || (Int.equal l 3 && (less_than maxi t || less_than t mini))
then failwith "Bigint.to_int: too large";
let sum = ref 0 in
let pow = ref 1 in
for i = l-1 downto 0 do
sum := !sum + t.(i) * !pow;
pow := !pow*base;
done;
!sum
let to_int n =
if Obj.is_int n then coerce_to_int n
else int_of_ints (coerce_to_ints n)
let app_pair f (m, n) =
(f m, f n)
let add m n =
if Obj.is_int m && Obj.is_int n
then of_int (coerce_to_int m + coerce_to_int n)
else of_ints (add (to_ints m) (to_ints n))
let sub m n =
if Obj.is_int m && Obj.is_int n
then of_int (coerce_to_int m - coerce_to_int n)
else of_ints (sub (to_ints m) (to_ints n))
let mult m n =
if Obj.is_int m && Obj.is_int n
then of_int (coerce_to_int m * coerce_to_int n)
else of_ints (mult (to_ints m) (to_ints n))
let euclid m n =
if Obj.is_int m && Obj.is_int n
then app_pair of_int
(coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n)
else app_pair of_ints (euclid (to_ints m) (to_ints n))
let less_than m n =
if Obj.is_int m && Obj.is_int n
then coerce_to_int m < coerce_to_int n
else less_than (to_ints m) (to_ints n)
let neg n =
if Obj.is_int n then of_int (- (coerce_to_int n))
else of_ints (neg (to_ints n))
let of_string m = of_ints (of_string m)
let to_string m = to_string (to_ints m)
let zero = of_int 0
let one = of_int 1
let two = of_int 2
let sub_1 n = sub n one
let add_1 n = add n one
let mult_2 n = add n n
let div2_with_rest n =
let (q,b) = euclid n two in
(q, b == one)
let is_strictly_neg n = is_strictly_neg (to_ints n)
let is_strictly_pos n = is_strictly_pos (to_ints n)
let is_neg_or_zero n = is_neg_or_zero (to_ints n)
let is_pos_or_zero n = is_pos_or_zero (to_ints n)
let equal m n =
if Obj.is_block m && Obj.is_block n then
ArrayInt.equal (Obj.obj m) (Obj.obj n)
else m == n
(* spiwack: computes n^m *)
(* The basic idea of the algorithm is that n^(2m) = (n^2)^m *)
(* In practice the algorithm performs :
k*n^0 = k
k*n^(2m) = k*(n*n)^m
k*n^(2m+1) = (n*k)*(n*n)^m *)
let pow =
let rec pow_aux odd_rest n m = (* odd_rest is the k from above *)
if m<=0 then
odd_rest
else
let quo = m lsr 1 (* i.e. m/2 *)
and odd = not (Int.equal (m land 1) 0) in
pow_aux
(if odd then mult n odd_rest else odd_rest)
(mult n n)
quo
in
pow_aux one
(** Testing suite w.r.t. OCaml's Big_int *)
(*
module B = struct
open Big_int
let zero = zero_big_int
let to_string = string_of_big_int
let of_string = big_int_of_string
let add = add_big_int
let opp = minus_big_int
let sub = sub_big_int
let mul = mult_big_int
let abs = abs_big_int
let sign = sign_big_int
let euclid n m =
let n' = abs n and m' = abs m in
let q',r' = quomod_big_int n' m' in
(if sign (mul n m) < 0 && sign q' <> 0 then opp q' else q'),
(if sign n < 0 then opp r' else r')
end
let check () =
let roots = [ 1; 100; base; 100*base; base*base ] in
let rands = [ 1234; 5678; 12345678; 987654321 ] in
let nums = (List.flatten (List.map (fun x -> [x-1;x;x+1]) roots)) @ rands in
let numbers =
List.map string_of_int nums @
List.map (fun n -> string_of_int (-n)) nums
in
let i = ref 0 in
let compare op x y n n' =
incr i;
let s = Printf.sprintf "%30s" (to_string n) in
let s' = Printf.sprintf "%30s" (B.to_string n') in
if s <> s' then Printf.printf "%s%s%s: %s <> %s\n" x op y s s' in
let test x y =
let n = of_string x and m = of_string y in
let n' = B.of_string x and m' = B.of_string y in
let a = add n m and a' = B.add n' m' in
let s = sub n m and s' = B.sub n' m' in
let p = mult n m and p' = B.mul n' m' in
let q,r = try euclid n m with Division_by_zero -> zero,zero
and q',r' = try B.euclid n' m' with Division_by_zero -> B.zero, B.zero
in
compare "+" x y a a';
compare "-" x y s s';
compare "*" x y p p';
compare "/" x y q q';
compare "%" x y r r'
in
List.iter (fun a -> List.iter (test a) numbers) numbers;
Printf.printf "%i tests done\n" !i
*)
|