1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open CErrors
open Util
open Names
open Cic
open Term
open Reduction
open Type_errors
open Inductive
open Environ
let inductive_of_constructor = fst
let conv_leq_vecti env v1 v2 =
Array.fold_left2_i
(fun i _ t1 t2 ->
(try conv_leq env t1 t2
with NotConvertible -> raise (NotConvertibleVect i)); ())
()
v1
v2
let check_constraints cst env =
if Environ.check_constraints cst env then ()
else error_unsatisfied_constraints env cst
(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env (c,ty as j) =
match whd_all env ty with
| Sort s -> (c,s)
| _ -> error_not_type env j
(* This should be a type intended to be assumed. The error message is *)
(* not as useful as for [type_judgment]. *)
let assumption_of_judgment env j =
try fst(type_judgment env j)
with TypeError _ ->
error_assumption env j
(************************************************)
(* Incremental typing rules: builds a typing judgement given the *)
(* judgements for the subterms. *)
(*s Type of sorts *)
(* Prop and Set *)
let judge_of_prop = Sort (Type Univ.type1_univ)
(* Type of Type(i). *)
let judge_of_type u = Sort (Type (Univ.super u))
(*s Type of a de Bruijn index. *)
let judge_of_relative env n =
try
let LocalAssum (_,typ) | LocalDef (_,_,typ) = lookup_rel n env in
lift n typ
with Not_found ->
error_unbound_rel env n
(* Type of constants *)
let judge_of_constant env (kn,u as cst) =
let _cb =
try lookup_constant kn env
with Not_found ->
failwith ("Cannot find constant: "^Constant.to_string kn)
in
let ty, cu = constant_type env cst in
let () = check_constraints cu env in
ty
(* Type of an application. *)
let judge_of_apply env (f,funj) argjv =
let rec apply_rec n typ = function
| [] -> typ
| (h,hj)::restjl ->
(match whd_all env typ with
| Prod (_,c1,c2) ->
(try conv_leq env hj c1
with NotConvertible ->
error_cant_apply_bad_type env (n,c1, hj) (f,funj) argjv);
apply_rec (n+1) (subst1 h c2) restjl
| _ ->
error_cant_apply_not_functional env (f,funj) argjv)
in
apply_rec 1 funj (Array.to_list argjv)
(* Type of product *)
let sort_of_product env domsort rangsort =
match (domsort, rangsort) with
(* Product rule (s,Prop,Prop) *)
| (_, Prop Null) -> rangsort
(* Product rule (Prop/Set,Set,Set) *)
| (Prop _, Prop Pos) -> rangsort
(* Product rule (Type,Set,?) *)
| (Type u1, Prop Pos) ->
if engagement env = ImpredicativeSet then
(* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
rangsort
else
(* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
Type (Univ.sup u1 Univ.type0_univ)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Pos, Type u2) -> Type (Univ.sup Univ.type0_univ u2)
(* Product rule (Prop,Type_i,Type_i) *)
| (Prop Null, Type _) -> rangsort
(* Product rule (Type_i,Type_i,Type_i) *)
| (Type u1, Type u2) -> Type (Univ.sup u1 u2)
(* Type of a type cast *)
(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule
env |- c:typ1 env |- typ2:s env |- typ1 <= typ2
---------------------------------------------------------------------
env |- c:typ2
*)
let judge_of_cast env (c,cj) k tj =
let conversion =
match k with
| VMcast | NATIVEcast -> vm_conv CUMUL
| DEFAULTcast -> conv_leq in
try
conversion env cj tj
with NotConvertible ->
error_actual_type env (c,cj) tj
(* Inductive types. *)
(* The type is parametric over the uniform parameters whose conclusion
is in Type; to enforce the internal constraints between the
parameters and the instances of Type occurring in the type of the
constructors, we use the level variables _statically_ assigned to
the conclusions of the parameters as mediators: e.g. if a parameter
has conclusion Type(alpha), static constraints of the form alpha<=v
exist between alpha and the Type's occurring in the constructor
types; when the parameters is finally instantiated by a term of
conclusion Type(u), then the constraints u<=alpha is computed in
the App case of execute; from this constraints, the expected
dynamic constraints of the form u<=v are enforced *)
let judge_of_inductive_knowing_parameters env (ind,u) (paramstyp:constr array) =
let specif =
try lookup_mind_specif env ind
with Not_found ->
failwith ("Cannot find inductive: "^MutInd.to_string (fst ind))
in
type_of_inductive_knowing_parameters env (specif,u) paramstyp
let judge_of_inductive env ind =
judge_of_inductive_knowing_parameters env ind [||]
(* Constructors. *)
let judge_of_constructor env (c,u) =
let ind = inductive_of_constructor c in
let specif =
try lookup_mind_specif env ind
with Not_found ->
failwith ("Cannot find inductive: "^MutInd.to_string (fst ind))
in
type_of_constructor (c,u) specif
(* Case. *)
let check_branch_types env (c,cj) (lfj,explft) =
try conv_leq_vecti env lfj explft
with
NotConvertibleVect i ->
error_ill_formed_branch env c i lfj.(i) explft.(i)
| Invalid_argument _ ->
error_number_branches env (c,cj) (Array.length explft)
let judge_of_case env ci pj (c,cj) lfj =
let indspec =
try find_rectype env cj
with Not_found -> error_case_not_inductive env (c,cj) in
let _ = check_case_info env (fst (fst indspec)) ci in
let (bty,rslty) = type_case_branches env indspec pj c in
check_branch_types env (c,cj) (lfj,bty);
rslty
(* Projection. *)
let judge_of_projection env p c ct =
let pb = lookup_projection p env in
let (ind,u), args =
try find_rectype env ct
with Not_found -> error_case_not_inductive env (c, ct)
in
assert(MutInd.equal pb.proj_ind (fst ind));
let ty = subst_instance_constr u pb.proj_type in
substl (c :: List.rev args) ty
(* Fixpoints. *)
(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)
let type_fixpoint env lna lar lbody vdefj =
let lt = Array.length vdefj in
assert (Array.length lar = lt && Array.length lbody = lt);
try
conv_leq_vecti env vdefj (Array.map (fun ty -> lift lt ty) lar)
with NotConvertibleVect i ->
let vdefj = Array.map2 (fun b ty -> b,ty) lbody vdefj in
error_ill_typed_rec_body env i lna vdefj lar
(************************************************************************)
(************************************************************************)
(* let refresh_arity env ar = *)
(* let ctxt, hd = decompose_prod_assum ar in *)
(* match hd with *)
(* Sort (Type u) when not (is_univ_variable u) -> *)
(* let u' = fresh_local_univ() in *)
(* let env' = add_constraints (enforce_leq u u' empty_constraint) env in *)
(* env', mkArity (ctxt,Type u') *)
(* | _ -> env, ar *)
(* The typing machine. *)
let rec execute env cstr =
match cstr with
(* Atomic terms *)
| Sort (Prop _) -> judge_of_prop
| Sort (Type u) -> judge_of_type u
| Rel n -> judge_of_relative env n
| Var _ -> anomaly (Pp.str "Section variable in Coqchk!")
| Const c -> judge_of_constant env c
(* Lambda calculus operators *)
| App (App (f,args),args') ->
execute env (App(f,Array.append args args'))
| App (f,args) ->
let jl = execute_array env args in
let j =
match f with
| Ind ind ->
judge_of_inductive_knowing_parameters env ind jl
| _ ->
(* No template polymorphism *)
execute env f
in
let jl = Array.map2 (fun c ty -> c,ty) args jl in
judge_of_apply env (f,j) jl
| Proj (p, c) ->
let ct = execute env c in
judge_of_projection env p c ct
| Lambda (name,c1,c2) ->
let _ = execute_type env c1 in
let env1 = push_rel (LocalAssum (name,c1)) env in
let j' = execute env1 c2 in
Prod(name,c1,j')
| Prod (name,c1,c2) ->
let varj = execute_type env c1 in
let env1 = push_rel (LocalAssum (name,c1)) env in
let varj' = execute_type env1 c2 in
Sort (sort_of_product env varj varj')
| LetIn (name,c1,c2,c3) ->
let j1 = execute env c1 in
(* /!\ c2 can be an inferred type => refresh
(but the pushed type is still c2) *)
let _ =
let env',c2' = (* refresh_arity env *) env, c2 in
let _ = execute_type env' c2' in
judge_of_cast env' (c1,j1) DEFAULTcast c2' in
let env1 = push_rel (LocalDef (name,c1,c2)) env in
let j' = execute env1 c3 in
subst1 c1 j'
| Cast (c,k,t) ->
let cj = execute env c in
let _ = execute_type env t in
judge_of_cast env (c,cj) k t;
t
(* Inductive types *)
| Ind ind -> judge_of_inductive env ind
| Construct c -> judge_of_constructor env c
| Case (ci,p,c,lf) ->
let cj = execute env c in
let pj = execute env p in
let lfj = execute_array env lf in
judge_of_case env ci (p,pj) (c,cj) lfj
| Fix ((_,i as vni),recdef) ->
let fix_ty = execute_recdef env recdef i in
let fix = (vni,recdef) in
check_fix env fix;
fix_ty
| CoFix (i,recdef) ->
let fix_ty = execute_recdef env recdef i in
let cofix = (i,recdef) in
check_cofix env cofix;
fix_ty
(* Partial proofs: unsupported by the kernel *)
| Meta _ ->
anomaly (Pp.str "the kernel does not support metavariables.")
| Evar _ ->
anomaly (Pp.str "the kernel does not support existential variables.")
and execute_type env constr =
let j = execute env constr in
snd (type_judgment env (constr,j))
and execute_recdef env (names,lar,vdef) i =
let larj = execute_array env lar in
let larj = Array.map2 (fun c ty -> c,ty) lar larj in
let lara = Array.map (assumption_of_judgment env) larj in
let env1 = push_rec_types (names,lara,vdef) env in
let vdefj = execute_array env1 vdef in
type_fixpoint env1 names lara vdef vdefj;
lara.(i)
and execute_array env = Array.map (execute env)
(* Derived functions *)
let infer env constr = execute env constr
let infer_type env constr = execute_type env constr
(* Typing of several terms. *)
let check_ctxt env rels =
fold_rel_context (fun d env ->
match d with
| LocalAssum (_,ty) ->
let _ = infer_type env ty in
push_rel d env
| LocalDef (_,bd,ty) ->
let j1 = infer env bd in
let _ = infer env ty in
conv_leq env j1 ty;
push_rel d env)
rels ~init:env
(* Polymorphic arities utils *)
let check_kind env ar u =
match (snd (dest_prod env ar)) with
| Sort (Type u') when Univ.Universe.equal u' (Univ.Universe.make u) -> ()
| _ -> failwith "not the correct sort"
let check_polymorphic_arity env params par =
let pl = par.template_param_levels in
let rec check_p env pl params =
match pl, params with
Some u::pl, LocalAssum (na,ty)::params ->
check_kind env ty u;
check_p (push_rel (LocalAssum (na,ty)) env) pl params
| None::pl,d::params -> check_p (push_rel d env) pl params
| [], _ -> ()
| _ -> failwith "check_poly: not the right number of params" in
check_p env pl (List.rev params)
|