1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This module instantiates the structure of generic deBruijn terms to Coq *)
open Errors
open Util
open Names
open Esubst
open Cic
(* Sorts. *)
let family_of_sort = function
| Prop Null -> InProp
| Prop Pos -> InSet
| Type _ -> InType
let family_equal = (==)
let sort_of_univ u =
if Univ.is_type0m_univ u then Prop Null
else if Univ.is_type0_univ u then Prop Pos
else Type u
(********************************************************************)
(* Constructions as implemented *)
(********************************************************************)
let rec strip_outer_cast c = match c with
| Cast (c,_,_) -> strip_outer_cast c
| _ -> c
let collapse_appl c = match c with
| App (f,cl) ->
let rec collapse_rec f cl2 =
match (strip_outer_cast f) with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| _ -> App (f,cl2)
in
collapse_rec f cl
| _ -> c
let decompose_app c =
match collapse_appl c with
| App (f,cl) -> (f, Array.to_list cl)
| _ -> (c,[])
let applist (f,l) = App (f, Array.of_list l)
(****************************************************************************)
(* Functions for dealing with constr terms *)
(****************************************************************************)
(*********************)
(* Occurring *)
(*********************)
let iter_constr_with_binders g f n c = match c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_,t) -> f n c; f n t
| Prod (_,t,c) -> f n t; f (g n) c
| Lambda (_,t,c) -> f n t; f (g n) c
| LetIn (_,b,t,c) -> f n b; f n t; f (g n) c
| App (c,l) -> f n c; Array.iter (f n) l
| Evar (_,l) -> Array.iter (f n) l
| Case (_,p,c,bl) -> f n p; f n c; Array.iter (f n) bl
| Fix (_,(_,tl,bl)) ->
Array.iter (f n) tl;
Array.iter (f (iterate g (Array.length tl) n)) bl
| CoFix (_,(_,tl,bl)) ->
Array.iter (f n) tl;
Array.iter (f (iterate g (Array.length tl) n)) bl
| Proj (p, c) -> f n c
exception LocalOccur
(* (closedn n M) raises FreeVar if a variable of height greater than n
occurs in M, returns () otherwise *)
let closedn n c =
let rec closed_rec n c = match c with
| Rel m -> if m>n then raise LocalOccur
| _ -> iter_constr_with_binders succ closed_rec n c
in
try closed_rec n c; true with LocalOccur -> false
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
let closed0 = closedn 0
(* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *)
let noccurn n term =
let rec occur_rec n c = match c with
| Rel m -> if Int.equal m n then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M
for n <= p < n+m *)
let noccur_between n m term =
let rec occur_rec n c = match c with
| Rel(p) -> if n<=p && p<n+m then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
let noccur_with_meta n m term =
let rec occur_rec n c = match c with
| Rel p -> if n<=p && p<n+m then raise LocalOccur
| App(f,cl) ->
(match f with
| (Cast (Meta _,_,_)| Meta _) -> ()
| _ -> iter_constr_with_binders succ occur_rec n c)
| Evar (_, _) -> ()
| _ -> iter_constr_with_binders succ occur_rec n c
in
try (occur_rec n term; true) with LocalOccur -> false
(*********************)
(* Lifting *)
(*********************)
let map_constr_with_binders g f l c = match c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> Cast (f l c, k, f l t)
| Prod (na,t,c) -> Prod (na, f l t, f (g l) c)
| Lambda (na,t,c) -> Lambda (na, f l t, f (g l) c)
| LetIn (na,b,t,c) -> LetIn (na, f l b, f l t, f (g l) c)
| App (c,al) -> App (f l c, Array.map (f l) al)
| Evar (e,al) -> Evar (e, Array.map (f l) al)
| Case (ci,p,c,bl) -> Case (ci, f l p, f l c, Array.map (f l) bl)
| Fix (ln,(lna,tl,bl)) ->
let l' = iterate g (Array.length tl) l in
Fix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| CoFix(ln,(lna,tl,bl)) ->
let l' = iterate g (Array.length tl) l in
CoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| Proj (p, c) -> Proj (p, f l c)
(* The generic lifting function *)
let rec exliftn el c = match c with
| Rel i -> Rel(reloc_rel i el)
| _ -> map_constr_with_binders el_lift exliftn el c
(* Lifting the binding depth across k bindings *)
let liftn k n =
match el_liftn (pred n) (el_shft k el_id) with
| ELID -> (fun c -> c)
| el -> exliftn el
let lift k = liftn k 1
(*********************)
(* Substituting *)
(*********************)
(* (subst1 M c) substitutes M for Rel(1) in c
we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel
M1,...,Mn for respectively Rel(1),...,Rel(n) in c *)
(* 1st : general case *)
type info = Closed | Open | Unknown
type 'a substituend = { mutable sinfo: info; sit: 'a }
let rec lift_substituend depth s =
match s.sinfo with
| Closed -> s.sit
| Open -> lift depth s.sit
| Unknown ->
s.sinfo <- if closed0 s.sit then Closed else Open;
lift_substituend depth s
let make_substituend c = { sinfo=Unknown; sit=c }
let substn_many lamv n c =
let lv = Array.length lamv in
if Int.equal lv 0 then c
else
let rec substrec depth c = match c with
| Rel k ->
if k<=depth then c
else if k-depth <= lv then lift_substituend depth lamv.(k-depth-1)
else Rel (k-lv)
| _ -> map_constr_with_binders succ substrec depth c in
substrec n c
let substnl laml n =
substn_many (Array.map make_substituend (Array.of_list laml)) n
let substl laml = substnl laml 0
let subst1 lam = substl [lam]
(***************************************************************************)
(* Type of assumptions and contexts *)
(***************************************************************************)
let empty_rel_context = []
let rel_context_length = List.length
let rel_context_nhyps hyps =
let rec nhyps acc = function
| [] -> acc
| (_,None,_)::hyps -> nhyps (1+acc) hyps
| (_,Some _,_)::hyps -> nhyps acc hyps in
nhyps 0 hyps
let fold_rel_context f l ~init = List.fold_right f l init
let map_rel_context f l =
let map_decl (n, body_o, typ as decl) =
let body_o' = Option.smartmap f body_o in
let typ' = f typ in
if body_o' == body_o && typ' == typ then decl else
(n, body_o', typ')
in
List.smartmap map_decl l
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (Rel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
(* Iterate lambda abstractions *)
(* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *)
let compose_lam l b =
let rec lamrec = function
| ([], b) -> b
| ((v,t)::l, b) -> lamrec (l, Lambda (v,t,b))
in
lamrec (l,b)
(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
let decompose_lam =
let rec lamdec_rec l c = match c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
| Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
in
lamdec_rec []
(* Decompose lambda abstractions and lets, until finding n
abstractions *)
let decompose_lam_n_assum n =
if n < 0 then
error "decompose_lam_n_assum: integer parameter must be positive";
let rec lamdec_rec l n c =
if Int.equal n 0 then l,c
else match c with
| Lambda (x,t,c) -> lamdec_rec ((x,None,t) :: l) (n-1) c
| LetIn (x,b,t,c) -> lamdec_rec ((x,Some b,t) :: l) n c
| Cast (c,_,_) -> lamdec_rec l n c
| c -> error "decompose_lam_n_assum: not enough abstractions"
in
lamdec_rec empty_rel_context n
(* Iterate products, with or without lets *)
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
let mkProd_or_LetIn (na,body,t) c =
match body with
| None -> Prod (na, t, c)
| Some b -> LetIn (na, b, t, c)
let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c)
let decompose_prod_assum =
let rec prodec_rec l c =
match c with
| Prod (x,t,c) -> prodec_rec ((x,None,t) :: l) c
| LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t) :: l) c
| Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
in
prodec_rec empty_rel_context
let decompose_prod_n_assum n =
if n < 0 then
error "decompose_prod_n_assum: integer parameter must be positive";
let rec prodec_rec l n c =
if Int.equal n 0 then l,c
else match c with
| Prod (x,t,c) -> prodec_rec ((x,None,t) :: l) (n-1) c
| LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t) :: l) (n-1) c
| Cast (c,_,_) -> prodec_rec l n c
| c -> error "decompose_prod_n_assum: not enough assumptions"
in
prodec_rec empty_rel_context n
(***************************)
(* Other term constructors *)
(***************************)
type arity = rel_context * sorts
let mkArity (sign,s) = it_mkProd_or_LetIn (Sort s) sign
let destArity =
let rec prodec_rec l c =
match c with
| Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c
| LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c
| Cast (c,_,_) -> prodec_rec l c
| Sort s -> l,s
| _ -> anomaly ~label:"destArity" (Pp.str "not an arity")
in
prodec_rec []
let rec isArity c =
match c with
| Prod (_,_,c) -> isArity c
| LetIn (_,b,_,c) -> isArity (subst1 b c)
| Cast (c,_,_) -> isArity c
| Sort _ -> true
| _ -> false
(*******************************)
(* alpha conversion functions *)
(*******************************)
(* alpha conversion : ignore print names and casts *)
let compare_sorts s1 s2 = match s1, s2 with
| Prop c1, Prop c2 ->
begin match c1, c2 with
| Pos, Pos | Null, Null -> true
| Pos, Null -> false
| Null, Pos -> false
end
| Type u1, Type u2 -> Univ.Universe.equal u1 u2
| Prop _, Type _ -> false
| Type _, Prop _ -> false
let eq_puniverses f (c1,u1) (c2,u2) =
Univ.Instance.equal u1 u2 && f c1 c2
let compare_constr f t1 t2 =
match t1, t2 with
| Rel n1, Rel n2 -> Int.equal n1 n2
| Meta m1, Meta m2 -> Int.equal m1 m2
| Var id1, Var id2 -> Id.equal id1 id2
| Sort s1, Sort s2 -> compare_sorts s1 s2
| Cast (c1,_,_), _ -> f c1 t2
| _, Cast (c2,_,_) -> f t1 c2
| Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 && f c1 c2
| Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 && f c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 && f t1 t2 && f c1 c2
| App (c1,l1), App (c2,l2) ->
if Int.equal (Array.length l1) (Array.length l2) then
f c1 c2 && Array.for_all2 f l1 l2
else
let (h1,l1) = decompose_app t1 in
let (h2,l2) = decompose_app t2 in
if Int.equal (List.length l1) (List.length l2) then
f h1 h2 && List.for_all2 f l1 l2
else false
| Evar (e1,l1), Evar (e2,l2) -> Int.equal e1 e2 && Array.equal f l1 l2
| Const c1, Const c2 -> eq_puniverses eq_con_chk c1 c2
| Ind c1, Ind c2 -> eq_puniverses eq_ind_chk c1 c2
| Construct ((c1,i1),u1), Construct ((c2,i2),u2) -> Int.equal i1 i2 && eq_ind_chk c1 c2
&& Univ.Instance.equal u1 u2
| Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
f p1 p2 && f c1 c2 && Array.equal f bl1 bl2
| Fix ((ln1, i1),(_,tl1,bl1)), Fix ((ln2, i2),(_,tl2,bl2)) ->
Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 &&
Array.equal f tl1 tl2 && Array.equal f bl1 bl2
| CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
Int.equal ln1 ln2 && Array.equal f tl1 tl2 && Array.equal f bl1 bl2
| Proj (p1,c1), Proj(p2,c2) -> eq_con_chk p1 p2 && f c1 c2
| _ -> false
let rec eq_constr m n =
(m == n) ||
compare_constr eq_constr m n
let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
(* Universe substitutions *)
let map_constr f c = map_constr_with_binders (fun x -> x) (fun _ c -> f c) 0 c
let subst_instance_constr subst c =
if Univ.Instance.is_empty subst then c
else
let f u = Univ.subst_instance_instance subst u in
let changed = ref false in
let rec aux t =
match t with
| Const (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; Const (c, u'))
| Ind (i, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; Ind (i, u'))
| Construct (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; Construct (c, u'))
| Sort (Type u) ->
let u' = Univ.subst_instance_universe subst u in
if u' == u then t else
(changed := true; Sort (sort_of_univ u'))
| _ -> map_constr aux t
in
let c' = aux c in
if !changed then c' else c
let subst_instance_context s ctx =
if Univ.Instance.is_empty s then ctx
else map_rel_context (fun x -> subst_instance_constr s x) ctx
|