blob: 02b856edcf3aa33cd0340517a9f57bed72535983 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Term
open Environ
(*i*)
(************************************************************************)
(*s Reduction functions *)
val whd_betaiotazeta : env -> constr -> constr
val whd_betadeltaiota : env -> constr -> constr
val whd_betadeltaiota_nolet : env -> constr -> constr
(************************************************************************)
(*s conversion functions *)
exception NotConvertible
exception NotConvertibleVect of int
type 'a conversion_function = env -> 'a -> 'a -> unit
type conv_pb = CONV | CUMUL
val conv : constr conversion_function
val conv_leq : constr conversion_function
val conv_leq_vecti : constr array conversion_function
val vm_conv : conv_pb -> constr conversion_function
(************************************************************************)
(* Builds an application node, reducing beta redexes it may produce. *)
val beta_appvect : constr -> constr array -> constr
(* Builds an application node, reducing the [n] first beta-zeta redexes. *)
val betazeta_appvect : int -> constr -> constr array -> constr
(* Pseudo-reduction rule Prod(x,A,B) a --> B[x\a] *)
val hnf_prod_applist : env -> constr -> constr list -> constr
(************************************************************************)
(*s Recognizing products and arities modulo reduction *)
val dest_prod : env -> constr -> rel_context * constr
val dest_prod_assum : env -> constr -> rel_context * constr
val dest_arity : env -> constr -> arity
val is_arity : env -> constr -> bool
|